ISSN 0912-036X

放監季 4

20 - 1

環境放射線監視季報

(Quarterly Report of Ibaraki Environmental Radiation Monitoring)

第143報(平成19年度第 4 四半期)

茨城県 東海地区環境放射線監視委員会

ま え が き

本県の東海・大洗地区には、原子力発電所をはじめ、使用済核燃料再処理施設、核燃料加工施設、 試験研究用原子炉及び核燃料使用施設など各種多様な施設が多数立地しています。

このため、県は東海・大洗地区における原子力施設周辺の環境放射線の監視を民主的に行うため、 第三者監視機構として「茨城県東海地区環境放射線監視委員会」を設置し、監視計画を定めています。 この計画では、監視の目的を「原子力施設周辺の環境保全を図るとともに、公衆の安全と健康を確保 する」ために、

- ・ 周辺公衆の線量を推定評価する
- ・ 環境における放射性物質などの長期的変動を把握する
- ・ 原子力施設からの放射性物質の予期しない放出などの短期的変動を把握する

として、国、県、原子力事業所が分担して実施する監視・測定の項目・頻度や評価方法などを定めています。

関係機関は、この計画に基づき監視・測定を行い、四半期毎に監視委員会に報告を行っています。 この報告について、監視委員会の下部組織である評価部会が詳細に検討を行い、その結果を踏まえ、 監視委員会が評価を行い、監視季報としてとりまとめております。

季報の内容は次表のとおりです。

季 報	評 価 項 目
第1四半期	短期的変動調査結果(4~6月)
第2四半期	短期的変動調査結果 (7~9月), 長期的変動調査結果 (4~9月)
第3四半期	短期的変動調査結果(10~12月)
公 4 Ⅲ 4 Ⅲ	短期的変動調査結果(1~3月),長期的変動調査結果(10~3月),
第4四半期	年間線量の推定結果 (4~3月)

本監視季報は、平成19年度第4四半期における評価項目について、平成20年6月26日に本委員会を 開催して評価した結果です。

茨城県東海地区環境放射線監視委員会

委員長(茨城県副知事)川 俣 勝 慶

Ι	監視結	果の評価…		1
ΙΙ	監視結	果の概要…		3
	I I − 1	短期的変重	b調査結果·····	3
	II - 2	長期的変重	b調査結果·····	8
	II – 3	線量の推定	E結果·····	10
${\rm I\hspace{1em}I}$	測定結	果		13
	$\Pi - 1$	短期的変重	力調査結果·····	13
	1 環	境における	5測定結果······	13
	1 -	1 空間 ;	,線量率測定結果······	13
	1	- 1 - 1	モニタリングステーション	13
	1	-1-2	モニタリングポスト	17
	1 -	2 大気中	中放射能測定結果	21
	1	- 2 - 1	大気塵埃中の放射性核種分析結果 (54Mn 他)	21
	1	- 2 - 2	降下塵中の放射性核種分析結果 (54Mn 他)	23
	1 -	3 農畜産	崔物中の放射能測定結果	24
	1	- 3 - 1	牛乳(原乳)中の放射性核種分析結果(¹³¹ I)	24
	1 -	4 海洋に	こおける放射能測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
	1	- 4 - 1	海水中の放射性核種分析結果 (3H)	24
	2 敷	地内におり	ける測定結果	25
	2 -	1 空間)	· 線量率測定結果·····	25
	2	-1-1	モニタリングステーション	25
	2	- 1 - 2	モニタリングポスト	25
	2 -	2 大気中	中放射能測定結果	26
	2	- 2 - 1	大気塵埃中の放射性核種分析結果 (54Mn 他)	26
	3 放	出源におけ	ける測定結果	27
	3 -	1 排	気······	27
	3	- 1 - 1	排気中の放射性核種分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	27
	3	-1-2	排気中の全β放射能測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
	3	- 1 - 3	排気中の全α放射能測定結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	43
	3 -	2 排	水·····	44
	3	- 2 - 1	排水中の放射性核種分析結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	44

3 - 2 - 2 排水中の全β放射能測定結果	57
3-2-3 再処理排水中の放射性核種分析結果	60
$3-2-4$ 再処理排水中の全 β 放射能測定結果	65
3-2-5 排水の全γ放射能連続測定結果	66
Ⅲ-2 長期的変動調査結果	67
1 環境における測定結果	67
1 - 1 空間 y 線量率測定結果·······	67
1-1-1 サーベイ	67
1-1-2 積算線量	72
1-2 魚網表面吸収線量率の測定結果	81
1-3 大気中放射能測定結果	81
1-3-1 降下塵中の放射性核種分析結果 (54Mn 他) ···································	81
1-4 陸土中の放射能測定結果	84
1-4-1 土壌中の放射性核種分析結果 (⁵⁴ Mn 他) ···································	84
1-4-2 河底土中の放射性核種分析結果 (⁵⁴ Mn 他) ···································	84
1-4-3 海岸砂中の放射性核種分析結果 (⁵⁴ Mn 他) ···································	84
1-5 陸水中の放射能測定結果	86
1-5-1 河川水及び湖沼水中の放射性核種分析結果 (54Mn 他) ·······	86
1-5-2 飲料水中の放射性核種分析結果 (⁵⁴ Mn 他) ···································	86
1-6 海洋における放射能測定結果	87
1 - 6 - 1 海水中の放射性核種分析結果 (54Mn 他) ······	87
1 - 6 - 2 海底土中の放射性核種分析結果 (54Mn 他) ·······	89
1-7 排水口近辺土砂中の放射性核種分析結果 (54Mn 他) ······	93
2 敷地内における測定結果	94
2 - 1 空間 y 線量率測定結果······	94
2-1-1 積算線量	94
Ⅲ-3 線量の推定結果	95
1 積算線量による外部被ばく実効線量	95
2 環境試料中の放射性核種分析結果に基づく成人の預託実効線量	96
3 放出源情報に基づく実効線量	99
3-1 放射性気体廃棄物による実効線量	99
3-2 放射性液体廃棄物による実効線量	101
資料1 実効線量算出に用いた測定結果	
1-1 農畜産物中の放射能測定結果	103
1-1-1 牛乳(原乳)中の放射性核種分析結果(⁹⁰ Sr, ¹³⁷ Cs)	103

	1-1-2 野菜中の放射性核種分析結果 (%Sr, 131I, 137Cs) ····································	104
	1-1-3 精米中の放射性核種分析結果(90Sr, ¹³⁷ C s, ¹⁴ C) ····································	
1	- 2 陸水中の放射能測定結果	
	1-2-1 飲料水(水道水)中の放射性核種分析結果(³H) ····································	
1	- 3 海産物中の放射性核種分析結果	
	1 - 3 - 1	
	1-3-2 貝類 (⁵⁴ Mn 他) ···································	107
	1 - 3 - 3 海藻類 (⁵⁴ Mn 他)	108
1	- 4 放出源における測定結果	108
資料 2	実効線量算出に用いた測定結果の集計結果・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	109
2	- 1 積算線量	109
2	- 2 預託実効線量計算核種	112
2	- 3 放出源における放出量	113
	2-3-1 放射性気体廃棄物	113
	2-3-2 放射性液体廃棄物	114
参考 1	原子力機構サイクル工研再処理施設排水環境影響詳細調査結果	116
参考 2	主要施設運転状況	119
別表1	環境試料の核種濃度検出限界	121
別表2	排水中の全 β ・全 γ 検出限界・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	122
別表3	排気の不検出分放出量算出方法	123
別表4	排水の不検出分放出量算出方法・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	126
〈用語	ら・記号等の解説〉·····	128
〈本報	最告書の解説〉······	131
《参考	· · · · · · · · · · · · · · · · · · ·	
1		
2		
3	線量算出要領(抜粋)	146

本季報をご覧になる参考として

128ページに、〈用語・記号等の解説〉

131ページに、〈本報告書の解説〉

を掲載してあります。

I 監視結果の評価

茨城県環境放射線監視計画に基づく監視結果は下記のとおりである。

記

1 短期的変動調査結果(平成20年1月~平成20年3月)

全般を通じて,原子力施設周辺環境の放射線及び放射能レベルは,平常の変動幅を超えるものはなく,異常は認められなかった。原子力施設からの排気,排水中の放射能濃度等は,排出基準等を全て下回っていた。

2 長期的変動調査結果(平成19年10月~平成20年3月) 放射能の分布については、従来と特に変わった傾向は認められなかった。 放射能の蓄積の傾向は、認められなかった。

- 3 線量の推定結果 (平成19年4月~平成20年3月) 平成19年度の推定結果は以下のとおりである。
 - (1) 積算線量による外部被ばく実効線量は0.21~0.30ミリシーベルトであり、環境試料中の放射性核種分析 結果に基づく内部被ばくによる預託実効線量は、0.0001~0.0002ミリシーベルトであった。

なお,外部被ばく実効線量については,自然放射線の寄与によるものが大部分であり,内部被ばくの実 効線量については,過去の核爆発実験によるものが大部分である。

(2) 放出源情報に基づく実効線量について、気体廃棄物による実効線量は、外部被ばくによるものが0.0001 ミリシーベルト以下、内部被ばくによるものが0.0002ミリシーベルト以下であった。

また、液体廃棄物による実効線量は、外部被ばくによるものが0.0000ミリシーベルト、内部被ばくによるものが0.0089ミリシーベルト以下であった。

これらの値は、法令値(公衆の年間実効線量限度1ミリシーベルト)を大幅に下回っている。

Ⅱ 監視結果の概要

Ⅱ-1 短期的変動調査結果

評価対象期間:平成20年1月から平成20年3月

短期的変動調査は、原子力施設から平常稼動時に放出される放射性物質の他に、事故等により環境へ放出される放射線・放射性物質の有無や環境への影響の有無を早期に把握するために行っている。

1 環境における測定結果

1-1 空間ガンマ線量率測定結果 (13~20ページ)

空間の放射線(ガンマ線)の測定は、76地点のモニタリングステーション、モニタリングポストにおいて行っている。評価の対象となっている月平均値は、28nGy/時~53nGy/時の間にあり、平常の変動幅(上限値:100nGy/時)を下回っていた。

なお,1時間値の最大値(原子力機構原科研測定の東海村亀下:2月及び茨城県測定の鉾田市造谷:3月)も74nGy/時と平常の変動幅(上限値:100nGy/時)を下回っていた。

一般環境(事業所周辺監視区域境界及び敷地内を除く)

(単位:nGy/時)

				地	X	名	月平均値	1 時間値の最大値
東	海	地	X	<21>	(東海村, 那珂市,	常陸大宮市)	28~53	74 (亀下: 2月)
日	立	地	X	< 6 >	(日立市, 常陸太田	目市)	38~46	65 (留: 2月)
ひオ	こちな	なか均	拉区	< 8 >	(ひたちなか市)		32~49	66 (馬渡:1月)
大	洗	地	X	<15>	(大洗町, 鉾田市, 吉沢))	茨城町,水戸市(大場,	29~48	74 (造谷: 3月)
比	胶対	照地	区区	< 1 >	(水戸市石川)		46~47	61 (1, 2月)

< >内は地点数

注) 1時間値の最大値は、いずれも降雨時に観測されたものである。

事業所周辺監視区域境界

(単位:nGy/時)

				地	区名	月平均値	1 時間値の最大値
東	海	地	X	<14>	(原子力機構原科研,原子力機構サイクル工研,原電)	34~46	65 (サイクル工研ST-5:1月)
大	洗	地	区	<11>	(原子力機構大洗)	31~43	68 (P-1, P-6:3月)

< >内は地点数

注) 1時間値の最大値は、いずれも降雨時に観測されたものである。

1-2 大気中放射能測定結果

1 - 2 - 1 大気塵埃中の放射性核種分析結果 (⁵⁴Mn 他) (21~22ページ)

東海村村松など15地点(東海村6地点,ひたちなか市3地点,日立市1地点,鉾田市1地点,茨城町1地点,大洗町2地点,水戸市1地点)における測定結果は、全て不検出であった。

1-2-2 降下塵中の放射性核種分析結果 (54Mn 他) (23ページ)

水戸市愛宕町など3地点における測定結果は、全て不検出であった。

1-3 農畜産物中の放射能測定結果

1-3-1 **牛乳 (原乳) 中の放射性核種分析結果 (*31 L)** (24ページ)

那珂市豊喰など5地点における測定結果は、全て不検出であった。

1-4 海洋における放射能測定結果

1-4-1 海水中の放射性核種分析結果 (³H) (24ページ)

久慈沖(A)など12海域における測定結果は、全て不検出であった。

2 主な原子力施設の敷地内における測定結果

2-1 空間ガンマ線量率測定結果(25ページ)

原子力機構サイクル工研,原子力機構大洗の2地点とも,評価対象としている月平均値は,32nGy/ 時から35nGy/時であり、平常の変動幅(上限値:100nGy/時)を下回っていた。

なお、1 時間値の最大値 (原子力機構大洗測定のP-8:3月) も、62nGy/時と平常の変動幅 (上限値: 100nGy/時) を下回っていた。

(単位:nGy/時)

				地	区名	月平均值	1 時間値の最大値
東	海	地	X	< 1 >	(原子力機構サイクル工研)	32	46 (1月)
大	洗	地	X	<1>	(原子力機構大洗)	34~35	62 (3月)

< >内は地点数

注) 1時間値の最大値は、いずれも降雨時に観測されたものである。

2-2 大気中放射能測定結果

2-2-1 大気塵埃中の放射性核種分析結果 (54Mn他) (26ページ)

原子力機構原科研、原子力機構サイクル工研及び原子力機構大洗の3地点とも不検出であった。

3 放出源における測定結果

3-1 排気中の放射能測定結果

排気中に含まれる放射性物質については、原子力事業者が放射性核種分析、全ベータ放射能測定、全 アルファ放射能測定を行っている。

主要放出核種の放射性核種分析結果は、過去のレベル又はそれ以下であった。全ベータ放射能及び全アルファ放射能については不検出であった。

3-1-1 放射性核種分析結果(主要放出核種)(27~37ページ)

測定対象の44排気筒のうち、今期に放出のなかった3排気筒を除いた原子力機構原科研JRR-3、原子力機構サイクル工研再処理施設の主排気筒など41排気筒において希ガス(41Ar,85Krなど)、3Hなど各施設の放出核種を測定したところ下記の9排気筒で検出されたが、過去と同レベル又はそれ以下であった。

(検出状況)

測定者	施設名	核種名	3ヶ月平均濃度 (Bq∕c㎡)	3ヶ月平均濃度 過 去 最 大 値 (Bq/cm)	参考 管理の目標値 (Bq/cm³)
原子力機構原 科 研	JRR-3 NSRR 燃料試験施設	³H 希ガス 希ガス	4.5×10^{-5} 1.9×10^{-4} 8.0×10^{-3}	5.3×10^{-4} 6.6×10^{-4} 1.4×10^{-2}	6.0×10^{-3} 1.9×10^{-1} 7.8×10^{-2}
原子力機構サイクル工研	再処理施設・主排気筒	³ H	2.7×10^{-4}	2.6×10^{-3}	2.4×10^{-1}
第一化学	第4棟排気筒	³ H ¹⁴ C	2.0×10^{-5} 5.8×10^{-6}	$\begin{array}{c} 2.2 \times 10^{-5} \\ 2.3 \times 10^{-5} \end{array}$	$7.4 \times 10^{-4} \\ 1.6 \times 10^{-4}$
N D C	照射後試験棟(F棟) 化学分析棟(R棟)	希ガス ¹³¹ I	2.0×10^{-3} 3.4×10^{-9}	$3.2 \times 10^{-3} \\ 2.1 \times 10^{-8}$	$4.8 \times 10^{-3} \\ 7.4 \times 10^{-8}$
原燃工	加工工場	U	1.3×10^{-10}	3.9×10^{-10}	1.5×10^{-9}
日本核燃	照射後試験施設	希ガス	4.7×10^{-4}	5.0×10^{-3}	5.2×10^{-3}

注) 検出された核種のみ記載

3-1-1/ 放射性核種分析結果(その他検出された核種)(38ページ)

原電東海第二発電所など4排気筒で³Hが検出されたが、過去と同じレベル又はそれ以下であった。また、新たに検出された核種はなかった。

3-1-2. 3-1-2' 全ベータ放射能測定結果 $(39\sim42$ ページ)

NDC材料試験棟及び原子力機構原科研 J R R - 3 など25排気筒における測定結果は、いずれも不検出であった。

3-1-3 全アルファ放射能測定結果 (43ページ)

核管センター開発棟など4排気筒における測定結果は、いずれも不検出であった。

3-2 排水中の放射能測定結果

排水中に含まれる放射性物質の測定は、放射性核種分析、全ベータ放射能測定、再処理排水中の放射性核種分析、再処理排水中の全ベータ放射能測定、排水中の全ガンマ放射能測定によって行っている。

測定した結果,放射性核種分析,全ベータ放射能測定及び再処理排水中の放射性核種分析については, 全て法令値又は監視委員会が定める判断基準以下であった。再処理排水中の全ベータ放射能については 不検出,排水中の全ガンマ放射能については,過去と同じレベルであった。

3-2-1 放射性核種分析結果(主要放出核種) (44~49~-5)

原子力事業者は、原子力機構原科研第1排水溝、原子力機構サイクル工研第2排水溝など17排水溝において60Coなどの核種を測定している。下記の5排水溝で検出されたが、全て法令値(56ページ)以下であった。

(検出状況)

測定者	排水溝名	核種名	3ヶ月平均濃度 (Bq/cm³)	法 令 値 (Bq/cm³)	3ヶ月平均濃度 /法令値
原子力機構原 科 研	第2排水溝	3H	6.0×10^{-2}	6×10 *1)	1/1,000
原子力機構大 洗	北地区	3H	3.1×10^{-1}	6×10 *1)	1/190
原電	東海第二発電所	3H	1.5×10^{-2}	6×10 *1)	1/4,000
N D C	排水貯槽	¹³⁷ Cs ⁶⁰ Co	$6.0 \times 10^{-4} \\ 2.8 \times 10^{-4}$	9×10^{-2} 2×10^{-1}	1/150 1/710
第一化学	調整槽	³ H ¹⁴ C	1.3 1.2	2×10 *2) 2	1/15 1/1.6

- 注)検出された核種のみ記載。
 - *1) 水としての法令値
 - *2) 有機物 (メタンを除く) としての法令値

3 - 2 - 1 / 放射性核種分析結果(主要放出核種)(50~54ページ)

県は原子力機構原科研第1排水溝など12排水溝で測定している。2排水溝で⁶⁰Co, ¹³⁷Cs, ³H及び ¹⁴Cの4核種が検出されたが、いずれも法令値以下であった。又、水戸原子力事務所は原子力機構原科研第1排水溝など7排水溝で測定している。4排水溝で³H及び¹⁴Cの2核種が検出されたが、いずれも法令値以下であった。

3-2-1 *"* 放射性核種分析結果(その他検出された核種)(55ページ)

原子力事業者が測定した上記17排水溝において、主要放出核種以外の核種として原子力機構原科研第 1 排水溝などで、 90 Sr、 137 Cs、 232 Th、 3 H、 36 Clの 5 核種が検出されたが、いずれも法令値以下であった。

また、原電東海第二発電所において、新たに³⁶Clが検出されたが、これは、東海発電所金属廃棄物の溶融に伴い、雑固体減容処理設備の排ガス洗浄廃液から排出されたものである。

3-2-2, 3-2-2' 全ベータ放射能測定結果 $(57\sim59\%-5)$

原子力事業者,県などは原子力機構原科研第1排水溝及び原子力機構サイクル工研第1排水溝など12排水溝において測定した。原子力機構サイクル工研第1排水溝等の8排水溝で検出されたが, 法令等を考慮して監視委員会が定めた判断基準を全て下回っていた。

3-2-3 再処理施設排水中の放射性核種分析結果 $(60\sim63\sim-5)$

原子力機構サイクル工研が³Hなど14核種について分析した結果,いずれも不検出であった。 また,県が³Hなど9核種について測定した結果,いずれも不検出であった。

3-2-4 再処理施設排水中の全ベータ放射能測定結果(65ページ)

原子力機構サイクル工研、県測定とも、不検出であった。

3 - 2 - 5 排水中の全ガンマ放射能測定結果 (66ページ)

原子力機構原科研第2排水溝などの4排水溝で測定したところ,原子力機構原科研第2で降雨時 に検出されたが、過去の最高濃度を下回っていた。

(検出状況)

排水溝名	今期の月最高濃度 (Bq/cm³)	過去の月最高濃度 (Bq/cm³)
原子力機構原科研第2	7.5×10^{-2}	2.7×10^{-1}

Ⅱ-2 長期的変動調査結果

評価対象期間:平成19年10月から平成20年3月

長期的変動調査は、原子力施設からの放射性物質の影響による周辺の環境における放射線と放射性物質のレベル、蓄積傾向及び地域分布の状況などの長期的変動の有無を把握するために行っている。

1 環境における測定結果

1-1 空間ガンマ線量率測定結果

1-1-1 サーベイ結果 (67~71ページ)

サーベイによる空間ガンマ線量率の測定結果は、地域分布は従来と同じ傾向であり、経年変化も 従来と同じ水準で推移している。

測定地点	地点数	測 定 値(nGy/時)
東 海 地 区	36	23 ~ 48
大 洗 地 区	18	28 ~ 59
比較対照地区	2	33 ~ 45

1-1-2 積算線量測定結果 (72~80ページ)

積算線量の測定結果は、いずれも平常の変動幅の上限値以下であった。また、地域分布は従来と同じ傾向で、経年変化も従来と同じ水準で推移している。

測定地点	地点数	測 定 値(mGy/6ヶ月)
東海地区	67	0.11 ~ 0.25
大 洗 地 区	23	0.12 ~ 0.18
比較対照地区	3	0.13 ~ 0.17

1-2 漁網表面吸収線量率の測定結果(81ページ)

東海沖において40時間曳航し、測定した結果は、不検出であった。

1-3 大気中の放射能測定結果

1-3-1 降下塵中の放射性核種分析結果 (54Mn他) (81~83ページ)

水戸市愛宕町など3地点で採取、分析した結果、全て不検出であった。

1-4 陸土中の放射能測定結果

1-4-1 土壌中の放射性核種分析結果 (⁵⁴Mn他) (84~85ページ)

水戸市見川など8地点で採取、分析した結果、全地点で¹³⁷Csを検出したが、いずれも過去のレベルと同程度で、東海地区、大洗地区いずれも蓄積の傾向は、認められなかった。(85ページ)

(検出状況)

検出核種	分析値(Bq/kg・乾)	過去の最高値(Bq/kg・乾)		
¹³⁷ C s	4.2 ~ 13	85 (東海村須和間;平成5年)		

1-4-2 河底土中の放射性核種分析結果 (54Mn他) (84ページ)

東海村新川河口で採取、分析した結果、不検出であった。

1-4-3 海岸砂中の放射性核種分析結果 (⁵⁴Mn他) (84ページ)

大洗町大貫など3地点で採取、分析した結果、全て不検出であった。

- 1-5 陸水中の放射能測定結果
- 1-5-1 河川水及び湖沼水中の放射性核種分析結果 (⁵⁴Mn他) (86ページ)

那珂川下流など7地点で採取、分析した結果、全て不検出であった。

1-5-2 飲料水中の放射性核種分析結果 (54Mn他) (86ページ)

水戸市(水戸原子力事務所)など10地点で採取、測定した結果、全て不検出であった。

- 1-6 海洋における放射能測定結果
- **1-6-1** 海水中の放射性核種分析結果 (⁵⁴Mn他) (87~88ページ)

久慈沖(A)など12海域で採取、分析した結果、全て不検出であった。

1-6-2 海底土中の放射性核種分析結果 (⁵⁴Mn他) (89~91ページ)

久慈沖(A)など12海域で採取、分析した(ただしPu分析は 9 海域)結果、 137 Csが 4 海域で、Pu 6 9 海域で検出されたが、いずれも過去のレベルと同程度で、蓄積の傾向は、認められなかった。 (91ページ)

(検出状況)

検出核種	分析値(Bq/kg・乾)	過去の最高値(Bq/kg・乾)
¹³⁷ Cs	0.40 ~ 1.4	4.7 (阿字ヶ浦沖;平成3年)
Pu	0.15 ~ 0.51	1.8 (阿字ヶ浦沖;平成3年)

1-7 排水口近辺土砂中の放射性核種分析結果 (54Mn他) (93ページ)

原子力機構原科研第1排水口付近など7地点において採取、分析した結果、全て不検出であった。

2 敷地内における測定結果

2-1 空間ガンマ線量率測定結果

敷地内における積算線量の測定結果は、平常の変動幅の上限値以下であった。

2-1-1 積算線量の測定結果 (94ページ)

測定地点	測定値(mGy/6ヶ月)	平常の変動幅 (上限) (mGy/6ヶ月)
原子力機構原科研 MS-1	0.16	0.19

Ⅱ-3 線量の推定結果

評価対象期間:平成19年4月から平成20年3月

線量の推定は、原子力施設周辺地域住民の被ばく線量を推定評価し、法律で定める線量限度(年間 1 mSv)を十分に下回っているかどうかを確認するために行っている。

1 実測に基づく被ばく線量の推定

(1) 積算線量による外部被ばく線量(95ページ)

積算線量の測定結果から推定した外部被ばく実効線量は、0.24~0.28mSvであった。

なお、これは土壌などに含まれるウラン等からの自然放射線によるものが大部分である。

	地			名 実効線量(mSv)	
		区		東 海 地 区 0.24~0.28 (0.24~0.27)	
行	行 政		域	大 洗 地 区 0.24 (0.24)	
				比較対照地点 0.24 (0.23)	
+/-	⇒几	松	Ħ	東 海 地 区 0.25~0.30 (0.24~0.31)	
施	旭 改	党 境	境界	乔	大 洗 地 区 0.21 (0.20)

注 () 内は, 前年度の値

(2) 環境試料中の放射性核種分析結果に基づく成人の内部被ばく線量(96ページ)

環境試料中の放射性核種分析結果から推定した内部被ばく線量 (預託実効線量) は, 0.0001~0.0002mSv であった。

なお、これは過去に行われた核爆発実験によるものが大部分である。

	地	区	名	預託実効線量(mSv)
東	海	地	X	0.0001 (0.0001)
大	洗	地	X	0.0002 (0.0001)
	比 較 🦠	対 照 地	点	0.0001 (0.0001)

注1 以下の試料を用いて内部被ばく線量を算出した。

原 乳 10 試 料 (5 地点で 90 Sr, 137 Csを年 2 回, 131 Iを年 4 回)

野菜18試料(9地点でキャベツ,ホウレン草,ハクサイなどの ⁹⁰Sr, ¹³⁷Cs, ¹³¹Iを年2回)

精米7試料(7地点で ⁹⁰Sr, ¹³⁷Csを年1回)

飲料水12試料 (6地点で 3Hを年2回)

魚類 24 試料 (4 海域でシラス, ヒラメ, カレイの 54Mnなど 9 核種を年 2 回)

貝類20試料(3海域でハマグリ,アワビ,ウバ貝の54Mnなど9核種を年2回)

海藻類24試料 (3海域でアラメ、ヒジキ、ワカメの 54Mnなど9核種を年2回)

2 () 内は, 前年度の値

2 放出源情報に基づく被ばく線量の推定(99~102ページ)

主な原子力施設の排気及び排水中に含まれる放射性核種の分析結果から推定した被ばく線量(実効線量)は、外部被ばく線量が、0.0000~0.0001 mSv、内部被ばく線量が0.0000~0.0089mSvであった。

	気体廃棄物による	実効線量(mSv)	液体廃棄物による実効線量(mSv)		
地区名	外部被ばく線量	内部被ばく線量	外部被ばく線量	内部被ばく線量	
東海地区	0.0000~0.0001	0.0000~0.0002	0.0000	0.0000~0.0089	
	(0.0000~0.0001)	(0.0000~0.0002)	(0.0000)	(0.0000~0.0074)	
大洗地区	0.0000~0.0001	0.0000		0.0000~0.0002	
	(0.0000~0.0009)	(0.0000)		(0.0000~0.0004)	

注 () 内は, 前年度の値

3 線量の推定結果

これらの値は、法律で定める一般公衆の線量限度(年間1mSv)を大幅に下回っていた。

参考 1

原子力機構サイクル工研再処理施設排水環境影響詳細調査結果(116~118ページ)

本調査は、原子力機構サイクル工研が、再処理施設の低レベル放射性廃液の海洋放出に伴う同海域における 放射能水準の変動を詳細に把握するために毎月実施しているものであり、放出口を中心とした30地点で海水を 採取し、全地点で全ベータ放射能及び³H濃度、7地点で¹³⁷Cs濃度の測定を行っている。

今期は、いずれも検出されなかった。

(測定結果)

区分	地点数	分 析 値
海水の全ベータ放射能	30	不検出
海水中の 3H 分析	30	不検出
海水中の ¹³⁷ Cs 分析	7	不検出

Ⅲ 測 定 結 果

Ⅲ一 1 短期的変動調査結果

1 環境における測定結果

1-1 空間γ線量率測定結果

1-1-1 モニタリングステーション

測定者	評価対象	平常の変動幅 (上限)
県 施 設 者	月平均值	100nGy/時

測定者	測定地点				測 定 値 (nGy/時)						
者			`	種	別	1 月	2 月	3 月	平 均		
	東	海	4-4-	7	- / h	最	大	59	59	60	
	· 八	海	村	石	神	平	均	46	46	45	46
		"		曲	尚	最	大	64	66	62	
		″		豊	凹	平	均	50	50	50	50
		"		ъ	石川	最	大	61	62	62	
		″		丌 1	<u> Л</u> ЛІ	平	均	46	46	46	46
		"		押	延	最	大	60	62	58	
		″		111	進	平	均	44	45	44	44
		"		村	松	最	大	63	66	59	
		″		<i>ተ</i> ህ	14	平	均	49	49	49	49
			三菱原	5 百 歴	最	大	58	59	57		
		"		二发		平	均	44	44	44	44
県				原燃	姚 丁	最	大	49	53	47	
宋 	"		界	然 工	平	均	37	37	37	37	
	那	那 珂	市	声 横	堀	最	大	60	60	56	
	دارر	珂	111	供	が正	平	均	43	43	43	43
		"		門	部	最	大	55	54	50	
		//		1 1	ПЬ	平	均	38	38	38	38
		"		菅	谷	最	大	61	59	57	
		,			711	平	均	45	45	45	45
		"		木 ÷	米 崎	最	大	52	51	49	
		,		71 /	[C 1-H]	平	均	35	35	35	35
		"		額	田	最	大	54	55	60	
					Ш	平	均	43	43	43	43
		"		鴻	巣	最	大	46	44	40	
				Lva.	木	平	均	28	28	28	28

測定者	測定均	也 点				測	定 値 (nGy/時)	
上 者	側 足 5	也 只		種	別	1 月	2 月	3 月	平均
	亚士	经	4	最	大	54	49	46	
	那 珂 市	後	台	平	均	36	36	36	36
		щ	連	最	大	57	53	58	
	"	瓜	建	平	均	41	41	41	41
	ひたちなか市	馬	油	最	大	66 (注1)	64	59	
	いたらなが明	馬	渡	平	均	49	49	49	49
		出出	常陸那珂		大	63	61	64	
	"	吊隆加	(21円)	平	均	44	44	43	44
		7可令 >	77 / 		大	64	65	63	
	"	阿字ケ	佣	平	均	46	47	46	46
		400	П	最	大	60	56	54	
	"	堀	П	平	均	40	39	39	39
		<i>I</i> +-	4п	最	大	50	50	51	
	/ 佐 和	们	平	均	35	35	35	35	
	"	柳	沢	最	大	56	53	58	
県	"	1 3 11		平	均	38	39	38	38
宗 	日 立 市	久	慈	最	大	58	57	56	
	日 立 市	八	心	平	均	42	42	42	42
		大	沼	最	大	54	51	50	
	"	人	伯	平	均	39	39	39	39
	常陸太田市	磯	部	最	大	61	59	64	
	市性人口川	19交	미	平	均	45	45	45	45
	"	真	弓	最	大	50	52	52	
	,	共	7	平	均	38	38	38	38
	"	久	米	最	大	51	50	52	
	,		\rac{1}{2}	平	均	39	38	38	38
	党 陇 十 宁 击	相	本	最	大	54	50	60	
	市性八百川	常陸大宮市根。	个	平	均	36	36	36	36
	大 洗 町	大	貫	最	大	58	57	52	
	八 1儿 円	八 	只	平	均	40	40	39	40
	"	磯	浜	最	大	54	54	57	
	,	沙戈	伏	平	均	42	42	42	42

測定者	測	定 :	地 点				測	定値((nGy/時)	
上 者	(月)	止 .	地 点		種	別	1 月	2 月	3 月	平 均
	鉾 田	市	造	谷	最	大	60	59	74 ^(注2)	
	野 □	ΙĮJ	坦	11"	平	均	44	43	43	43
	"		荒	地	最	大	65	61	64	
	,		ЛЬ	ᄱ	平	均	46	46	46	46
	"		田	崎	最	大	49	48	48	
	,		Ш	ниј	平	均	35	35	35	35
	"		樅	山	最	大	60	53	57	
	,		71年	Е Щ	平	均	40	40	40	40
	"		上富	3 III	最	大	51	50	56	
	,		⊥ ¤	э Ш	平	均	38	38	38	38
	"		徳	宿	最	大	50	46	57	
県			15	1日	平	均	35	35	35	35
	茨 城	町	H	油	最	大	54	53	52	
	次城	щ	Щ	広 浦	平	均	39	39	39	39
	/ 海老沪	之 3口	最	大	58	55	65			
		5 1/	平	均	45	45	45	45		
	"		公 口	谷田部	最	大	47	45	45	
			17° U	네 다	平	均	35	35	35	35
	水 戸	市	吉	沢	最	大	56	53	56	
	八 户	ΙĮJ	口	<i>()</i> (平	均	42	42	42	42
	"		大	場	最	大	65	61	58	
	,		<u> </u>	*/701	平	均	48	48	48	48
	"		石	Ш	最	大	61(注3)	61(注3)	59	
	,		711	/11	平	均	47	47	46	47
原子	東海	村	須 利	1 問	最	大	55	56	52	
原子力機構原科研	木 1時	11	次 11	H 1 ₁	平	均	38	39	38	38
構原料	"		亀	下	最	大	71	74(注4)	70	
研	,		电	ı	平	均	53	53	53	53
原	"		舟 7	;]]]	最	大	49	50	51	
一 力 	7		/ij /L	舟 石 川	平	均	36	36	36	36
構計	ひたちな	か市	長砂	最	大	51	50	51		
イク	0 /2 9/4	· /4 1 1	1	н2	平	均	34	35	34	34
原子力機構サイクル工研	"		高	野	最	大	47	48	44	
研			ΙΗΊ	判	平	均	33	32	32	32

測定者	SHil	定地	占			測	定 値 (nGy/時)	
上者	(別)	止 地		種	別	1 月	2 月	3 月	平 均
原子	周辺監	視区均	或 境 界	最	大	52	52	66	
力機	(P - 2)		平	均	36	36	36	36
原子力機構大洗		"		最	大	58	58	68(注5)	
洗洗	(P - 6)		平	均	43	43	42	43
原	東海	村船	沿場	最	大	62	62	62	
	米 何	זעת ליט		平	均	47	47	47	47
		市	留	最	大	60	65(注6)	60	
電	日 立	111	Ħ	平	均	46	46	46	46

- (注1) ひたちなか地区の一般環境における1時間値の最大値66nGy/時(県測定:ひたちなか市馬渡)が観測されたのは、1月12日9時であり、降雨の影響によるものである。
- (注2) 大洗地区の一般環境における1時間値の最大値74nGy/時(県測定:鉾田市造谷)が観測されたのは,3月3日 20時であり,降雨の影響である。
- (注3) 比較対照地点における1時間値の最大値61nGy/時(県測定:水戸市石川)が観測されたのは,1月12日9時及び2月9日24時であり,降雨の影響である。
- (注4) 東海地区の一般環境における1時間値の最大値74nGy/時(原子力機構原科研測定:東海村亀下)が観測されたのは、2月9日23時であり、降雨の影響によるものである。
- (注 5) 大洗地区における事業所周辺監視区域境界における最大値68nGy/時(原子力機構大洗測定: P 6)が観測されたのは、3月3日20時であり、降雨の影響である。
- (注6) 日立地区の一般環境における1時間値の最大値65nGy/時(原電測定:日立市留)が観測されたのは,2月9日 23時であり、降雨の影響である。

測 定 者	評価対象	平常の変動幅 (上限)
施設者	月平均值	100nGy/時

測定者	게 수 地 부			測	定値	(nGy/時)	
上者	測定地点	種	別	1 月	2 月	3 月	平均
	周辺監視区域境界	最	大	54	58	54	
	(MP - 11)	平	均	45	45	44	45
原	"	最	大	54	56	47	
子力	(MP - 16)	平	均	35	35	34	35
機	"	最	大	55	57	50	
構	(MP - 17)	平	均	37	37	37	37
原科	"	最	大	51	52	47	
研研	(MP - 18)	平	均	39	39	39	39
	"	最	大	56	50	51	
	(MP - 19)	平	均	40	39	39	39
	周辺監視区域境界	最	大	62	64	57	
	(MP - 1)	平	均	44	44	44	44
原子	"	最	大	59	58	53	
力機	(MP - 6)	平	均	42	41	41	41
原子力機構サ	"	最	大	65(注1)	64	58	
イ	(ST-5)	平	均	46	46	46	46
クルエ	"	最	大	50	55	47	
工研	(MP - 7)	平	均	36	36	36	36
	"	最	大	62	64	56	
	(MP - 8)	平	均	44	44	44	44
	周辺監視区域境界	最	大	54	53	68(注2)	
	(P-1)	平	均	36	36	36	36
原	大 洗 町 成 田	最	大	56	55	67	
子士	(P-3)	平	均	40	40	40	40
力機	"	最	大	40	42	52	
構	(P-4)	平	均	30	30	29	30
大	周辺監視区域境界	最	大	50	49	62	
洗	(P-5)	平	均	34	34	33	34
	"	最	大	46	47	55	
	(P-7)	平	均	35	35	35	35

測定者	測定地点			測	定 値	(nGy/時)	
产者	側 定 地 点	種	別	1 月	2 月	3 月	平 均
	周辺監視区域境界	最	大	45	45	52	
	(P-11)	平	均	34	34	34	34
	"	最	大	44	43	50	
原	(P-12)	平	均	33	33	33	33
子,	"	最	大	46	48	57	
力機	(P-13)	平	均	35	36	35	35
構	"	最	大	49	49	61	
大	(P-14)	平	均	34	34	34	34
洗	"	最	大	51	49	62	
	(P-15)	平	均	34	34	35	34
	"	最	大	46	44	58	
	(P-16)	平	均	31	31	31	31
	周辺監視区域境界	最	大	55	59	54	
	(A)	平	均	43	43	42	43
原	"	最	大	53	57	51	
	(B)	平	均	40	40	39	40
	"	最	大	54	60	55	
	(C)	平	均	42	43	42	42
	"	最	大	55	61	54	
電	(D)	平	均	40	40	40	40
	東海村豊岡	最	大	56	62	55	
	不	平	均	43	43	42	43

⁽注1) 東海地区の事業所周辺監視区域境界における1時間値の最大値65nGy/時(原子力機構サイクル工研測定:ST -5)が観測されたのは、1月12日9時であり、降雨の影響である。

⁽注2) 大洗地区における事業所周辺監視区域境界における最大値68nGy/時(原子力機構大洗測定:P-1)が観測されたのは3月3日20時であり、降雨の影響である。

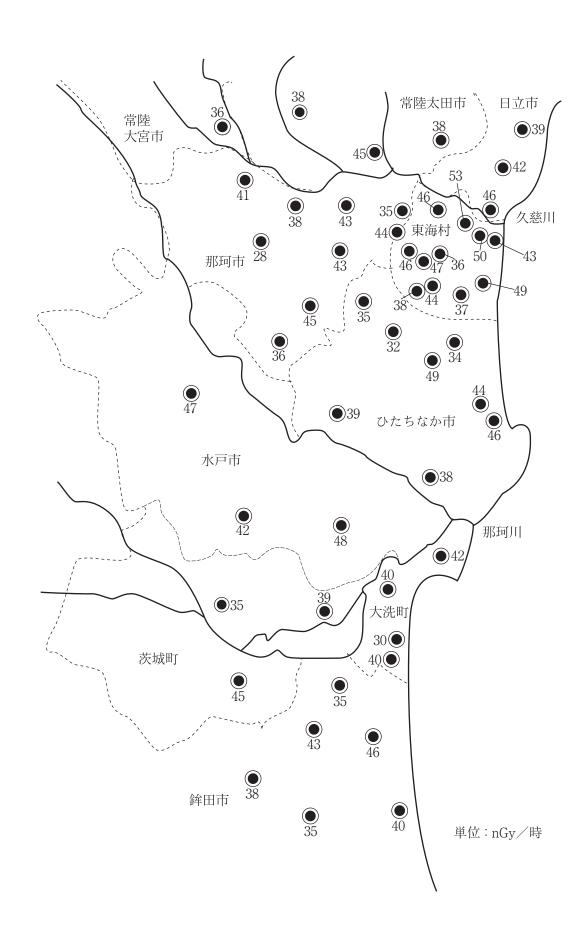
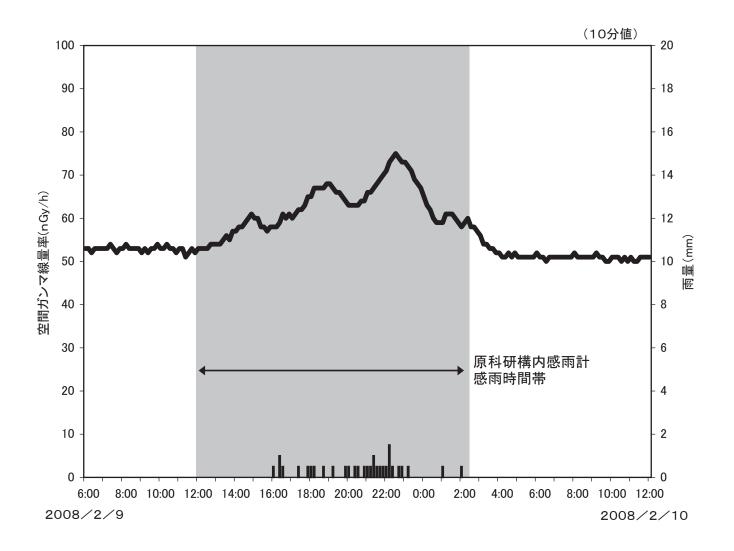



図 環境における空間 γ 線量率測定結果 (3 ヶ月平均値) (周辺監視区域境界を除く)

<u>今期の測定の中で最大値が観測された局</u>における空間ガンマ線量率時系列 (東海村亀下)

注)最大値が観測された事例(1時間値の最大値が測定された測定局における経時変化) 空間ガンマ線量率の上昇の原因は、降雨によるもの。

降雨により空間線量率が上昇するのは、自然の放射性核種(ラドンとラドンから生まれた核種)が雨により地表に落下するためであり、それらの核種の半減期は短いことから、雨が止んでから短時間で線量率は降雨前の水準に戻る。

1-2 大気中放射能測定結果

1-2-1 大気塵埃中の放射性核種分析結果 (54Mn他)

測	採取地点	松町日口		7	核 種・	分 析	値(mi	Bq/m³)		
測定者	探 収 地 点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
		1. 1~ 2. 1	*	*	*	*	*	*	*	
	水戸市 石 川	2. 1~ 3. 1	*	*	*	*	*	*	*	
		3. 1~ 4. 1	*	*	*	×	*	*	*	
		1. 1~ 2. 1	*	×	×	×	*	*	×	
	東海村村松	2. 1~ 3. 1	*	*	*	*	*	*	*	
		3. 1~ 4. 1	*	*	×	×	*	*	*	
		1. 1~ 2. 1	*	*	*	*	*	*	*	
県	ひたちなか市常陸那珂	2. 1~ 3. 1	*	*	*	*	*	*	*	
		3. 1~ 4. 1	*	*	*	*	*	*	*	
		1. 1~ 2. 1	*	*	*	*	*	*	*	
	茨 城 町 広 浦	2. 1~ 3. 1	*	*	*	*	*	*	×	
		3. 1~ 4. 1	*	*	*	*	*	*	*	
		1. 1~ 2. 1	*	*	*	*	*	*	*	
	鉾田市 造 谷	2. 1~ 3. 1	*	×	×	×	*	*	×	
		3. 1~ 4. 1	*	*	×	*	*	*	*	
		1. 4~ 2. 4	*	*	*	*	*	*	*	
原	周辺監視区域境界 (MS-2)	2. 4~ 3. 3	*	*	*	*	*	*	*] /
子		3. 3~ 3.31	*	*	*	*	*	*	*	
力		12.31~ 2. 4	*	×	*	×	*	*	*	
機構	東海村 須和間	2. 4~ 3. 3	*	*	*	*	*	*	*	
原		3. 3~ 3.31	*	*	×	*	*	*	*	
科		12.31~ 2. 4	*	*	*	*	*	*	*	
研	〃 亀 下	2. 4~ 3. 3	*	*	*	*	*	*	*	
		3. 3~ 3.31	×	×	×	×	×	×	×	

測	拉 昕 址 上	松田 日日		**************************************	亥 種 ·	分析	値(m	Bq/m^3		
測定者	採取地点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
		1. 4~ 2. 1	*	*	*	*	*	*	*	
原	東海村 舟石川	2. 1~ 2.29	*	*	*	*	*	*	×	*
子力		2.29~ 4. 1	*	*	*	*	*	*	×	
機構		1. 4~ 2. 1	*	*	*	*	*	*	×	
サ	ひたちなか市長砂	2. 1~ 2.29	*	*	*	*	*	*	×	*
イク		2.29~ 4. 1	*	*	*	*	*	*	*	
ル エ		1. 4~ 2. 1	*	*	*	*	*	*	*	
研研	ひたちなか市高野	2. 1~ 2.29	×	*	*	*	*	*	×	*
		2.29~ 4. 1	×	*	*	*	*	*	×	
		1. 7~ 2. 1	×	*	*	*	*	*	×	
原子	周辺監視区域境界 (P-2)	2. 1~ 3. 3	*	*	*	*	*	*	×	
力		3. 3~ 4. 1	*	*	*	*	*	*	*	
機構		1. 7~ 2. 1	*	*	*	*	*	*	×	
大洗	(P-6)	2. 1~ 3. 3	*	*	*	*	*	*	×	
		3. 3~ 4. 1	*	*	*	*	*	*	×	
		1. 2~ 2. 6	*	*	*	*	*	*	×	
原	東海村船場	2. 6~ 3. 5	*	*	*	*	*	*	×	
		3. 5~ 4. 2	*	*	*	*	*	*	×	
		1. 2~ 2. 6	*	*	*	*	*	*	×	
電	日立市 留	2. 6~ 3. 5	*	*	*	*	*	*	*	
		3. 5~ 4. 2	×	×	×	×	×	×	×	

1-2-2 降下塵中の放射性核種分析結果 (54Mn他)

測	拉 肋 垫 占	松取月日		核	種・ タ	予析 値	(Bq/m ²	2)	
測定者	採取地点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
		1. 4~ 2. 1	*	*	*	*	*	*	×
県	水 戸 市 愛宕町	2. 1~ 3. 3	*	*	*	*	*	*	*
		3. 3~ 4. 1	*	*	*	*	*	*	*
原子力		1. 4~ 2. 1	*	*	*	*	*	*	*
原子力機構原科研	構内	2. 1~ 3. 3	*	*	*	*	*	*	*
科研		3. 3~ 4. 1	*	*	*	*	*	*	×
原子		1. 4~ 2. 1	*	*	*	*	*	*	*
原子力機構大洗	構内	2. 1~ 3. 3	*	*	*	*	*	*	*
大洗		3. 3~ 4. 1	*	*	*	*	*	*	*

1-3 農畜産物中の放射能測定結果

1-3-1 牛乳 (原乳) 中の放射性核種分析結果 (¹³¹I)

測	定	者		採耳	取 均	也点		採取月日	核種	分析値 (Bq/L)
			那	珂	市	豊	喰	1.24	¹³¹ I	×
	県		水	戸	市	見	Ш	1.22	¹³¹ I	*
			大	洗	町	磯	浜	1.31	¹³¹ I	*
原子力榜	養構サイク	カル工研	ひた	ちなれ	か市	部日	于野	1.17	¹³¹ I	×
原子	力機構	大洗	鉾	田	市	子	生	1. 8	¹³¹ I	*

1-4 海洋における放射能測定結果

1-4-1 海水中の放射性核種分析結果 (³H)

測定者	採取地点		採取月日	水 温 (℃)	塩素量 (‰)	核種	分析值 (Bq/L)
	久 慈 沖	(A)	1.15	12.4	18.65	³ H	×
	原子力機構サイクル工研沖	(G)	1.15	14.8	19.08	³ H	×
IEI	阿 字 ヶ 浦 沖	(I)	1.15	13.7	18.97	³ H	×
県	那 珂 湊 沖	(J)	1.15	13.1	18.84	³ H	×
	大 貫 沖	(K)	1.15	10.7	17.72	³ H	×
	再処理排水放出口周辺	(P)	1.15	11.7	18.63	³ H	×
原子力機構原科研	原子力機構原科研沖	(C)	1.10	12.8	18.77	³ H	×
	原子力機構サイクル工研沖	(F)	1.15	12.0	18.17	³ H	×
原子力機構サイクル工研	長 砂 沖	(H)	1.15	12.7	18.50	³ H	×
	再処理排水放出口周辺	(P)	1.15	11.7	18.66	³ H	×
百乙升继进十分	原子力機構大洗沖	(L)	1.25	12.0	18.96	³ H	×
原子力機構大洗	"	(M)	1.25	11.1	18.83	³ H	×
原電	原 電 沖	(B)	1.16	12.2	15.01	³ H	*

注1) 採水海域:() 内は採水海域記号。位置は90ページの図を参照

注2) 採水部位は表層

2 敷地内における測定結果

2-1 空間γ線量率測定結果

2-1-1 モニタリングステーション

測定	者	評価対象	平常の変動幅(上限)
施設	者	月平均值	100nGy/時

測定者	測定地点			測 定	値((nGy/時)	
側 た 有	例足地点	種	別	1 月	2 月	3 月	平 均
原子力機構サイクル工研	C T 1	最	大	46	45	40	
	5 1 -1	平	均	32	32	32	32

(注)最大値46nGy/時は、1月12日9時に観測されたものであり、降雨の影響である。

2-1-2 モニタリングポスト

測定者	評価対象	平常の変動幅(上限)
施設者	月平均值	100nGy/時

測定者	測定地点		測 定	值	(nGy/時)	
例	例足地点	種別	1 月	2 月	3 月	平均
原子力機構	構内	最 大	54	51	62	
大 洗	先 (P-8)	平均	35	34	34	34

(注)最大値62nGy/時は、3月3日20時に観測されたものであり、降雨の影響である。

2-2 大気中放射能測定結果(敷地内)

2-2-1 大気塵埃中の放射性核種分析結果 (⁵⁴Mn他)

)III	- July 100 - E	拉 肋 日 口	核 種·分 析 値 (mBq/m³)										
測 定 者	採取地点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu			
原子力機構原 科 研		12.31~ 2. 4	×	×	×	×	×	×	×				
	MS-1	2. 4~ 3. 3 * * *	×	×	×	×	×						
		3. 3~ 3.31	*	×	*	*	*	*	*				
			1. 4~ 2. 1	*	×	*	*	*	*	*			
原子力機構サイクル工研	S T - 1	2. 1~ 2.29	×	×	×	×	×	×	×	*			
		2.29~ 4. 1	×	×	×	×	×	×	×				
					1. 4~ 2. 1	*	×	×	*	*	*	*	
原子力機構大洗洗	構内	2. 1~ 3. 3	×	*	×	*	*	×	×				
		3. 3~ 4. 1	*	*	*	*	*	*	×				

3 放出源における測定結果

3-1 排 気

3-1-1 排気中の放射性核種分析結果

(主要放出核種)

測	松	設	名	TT	. 🗆		放 出 状 況				
測定者	施	议	石	項		1 月	2 月	3 月	平 均	及びD L	
				最 高 (Bo		*	*	*		$^3\mathrm{H}$	
	JЯ	D	_ 2	平 均 (Bo	ョ 濃 度 q∕cm³)	*	*	*	*	1.1×10^{-4}	
	JK	IX	2	放寒	測 (GBq)	0	0	0	計 0	1.2×10^{-4}	
				量	検出分 (GBq)	9.9×10^{-1}	9.7×10^{-1}	9.2×10^{-1}	計 2.9	Bq/cm³	
(注2)				最 i (Bo						希ガス	
原				平 均 (Bo	り 濃 度 q∕cm³)					(41Ar)	
子				放実出	測 分 (GBq)	0	0	0	計 0	1.2×10^{-3}	
	T D	D	2	量不	検 出 分 (GBq)	0	0	0	計 0	Bq/cm³	
力	J R	Л	- 3	最 高 (Bo		*	*	5.1×10^{-5}		$^3\mathrm{H}$	
機				平 均 (Bo	ョ 濃 度 q∕cm³)	*	*	5.1×10^{-5}	4.5×10^{-5}	3.7×10^{-5}	
構				放実出	測 (GBq)	0	0	4.7	計 4.7	4.4×10^{-5}	
原				量不	検 出 分 (GBq)	4.1	3.8	0	計 7.9	Bq/cm³	
				最	哥 濃 度 q/cm³)					希ガス	
科	JЯ	D	_ 1	平 均 (Bo	月 濃 度 q/cm³)					(41Ar)	
研	JK	Л	- 4	放実出	測 (GBq)	0	0	0	計 0	1.1×10^{-3}	
				量不	検 出 分 (GBq)	0	0	0	計 0	Bq/cm³	
	N S R R	最 高 (Bo	哥 濃 度 q/cm³)			1.2×10^{-2}		希ガス			
		` -	_	平 均	見 ↑ 濃 度 q/cm³)			5.4×10^{-4}	1.9×10^{-4}	(41Ar)	
		R R	放		0	0	3.2	計 3.2	9.8×10^{-3}		
				出不	検 出 分 (GBq)	0	0	1.9×10	計 1.9×10	Bq/cm³	

測	., -			分析核種							
測定者	施 記	空 名		項目	B	1 月	2 月	3 月	平 均	及びDL	
			最 (高 Bq/cm³	度)	*	*	*		¹³¹ I	
	N. C	D D	平	均 。 Bq/cm³	度	*	*	×	*	7.6×10^{-9}	
	N S	R R	/3/	実 測 (GBq	分)	0	0	0	計 0	\approx 8.9 × 10 ⁻⁹	
			出 量	不検出 (GBq		8.0×10^{-5}	6.6×10^{-5}	6.9×10^{-5}	計 2.2×10 ⁻⁴	Bq/cm³	
			最 (高 Bq/cm³	度	1.1×10^{-2}	1.0×10^{-2}	1.0×10^{-2}		希ガス	
(注2) 原			平 (均 Bq/cm³	度	7.7×10^{-3}	8.4×10^{-3}	7.8×10^{-3}	8.0×10^{-3}	(85Kr)	
子			出。	実 測 (GBq		8.2	3.3×10	3.1	計 4.4×10	8.8×10^{-3}	
	燃料試	歸 旃設	量	不検出 (GBq)	3.4×10^{2}	3.2×10^{2}	3.5×10 ²	計 1.0×10 ³	Bq/cm³	
力	25.1.7.1.1.1.1.2.4	NOT THE HE		高 Bq/cm³		*	*	*		¹³¹ I	
機				均 Bq/cm³		*	*	*	*	1.5×10^{-9}	
構			出	実 測 (GBq		0	0	0	計 0	\sim 1.7 × 10 ⁻⁹	
原			量	不検出 (GBq)	7.5×10^{-5}	5.9×10^{-5}	5.8×10^{-5}	計 1.9×10 ⁻⁴	Bq/cm³	
				高 Bq/cm³		*	*	*		希ガス	
科			平	. (均 Bq/cm³		*	*	*	*	(138Xe)
研	 燃料サ	イクル	出	実 測 (GBq		0	0	0	計 0	7.8×10^{-4}	
		工学	量	不検出 (GBq)	1.5×10^{2}	1.4×10^{2}	1.5×10 ²	計 4.4×10 ²	Bq/cm³	
	研究 (NU(施設 CEF)	最 (高 Bq/cm³	度)	*	*	*		¹³¹ I	
	(100	<i>JLI)</i>		均 Bq/cm³		*	*	*	*	6.3×10^{-10}	
			出	実 測 (GBq		0	0	0	計 0	7.0×10^{-10}	
			量	不 検 出 (GBq)	1.4×10^{-4}	1.0×10^{-4}	1.1×10^{-4}	計 3.5×10 ⁻⁴	Bq/cm³	
	再	主		高 Bq/cm³		*	*	*		⁸⁵ Kr	
原子	177	土		均 Bq/cm³		*	*	*	*	2.4×10^{-3}	
原子力機構サ	処理	排	出	実 測 (GBq		0	0	0	計 0	Bq/cm^3	
構計			量	不 検 出 (GBq)	7.5×10^{2}	6.9×10^{2}	7.2×10 ²	計 2.2×10 ³	Dq∕ CIII	
ッイク	生	気		高 Bq/cm³		3.2×10^{-4}	2.9×10^{-4}	3.2×10^{-4}		³ H	
ルエ	施			均 Bq/cm³		2.9×10^{-4}	2.5×10^{-4}	2.7×10^{-4}	2.7×10^{-4}	3.7×10^{-5}	
研研	設	筒	放出	実 測 (GBq		7.9×10	7.0×10	9.2×10	計 2.4×10 ²	Bq/cm^3	
	HA.	IH)	量	不検出 (GBq	分)	0	0	0	計 0	Dq/ CIII	

測	T-L =	т. Б	- T		放出		,	 分析核種
測定者	施言	空 名	項目	1 月	2 月	3 月	平 均	及びDL
			最高濃度 (Bq/cm³)	*	*	*		¹⁴ C
			平 均 濃 度 (Bq/cm³)	*	*	*	*	4.0×10^{-5}
		主	放 実 測 分 (GBq)	0	0	0	計 0	$8q/cm^3$
			量 不 検 出 分 量 (GBq)	1.1×10	1.1×10	1.4×10	計 3.6×10	Dq/ CIII°
		 排	最高濃度 (Bq/cm³)	*	*	*		131 T
			平 均 濃 度 (Bq/cm³)	*	*	*	*	3.7×10^{-8}
		E	放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm ³
		気	量 不 筷 出 分 量 (GBq)	1.0×10^{-2}	1.0×10^{-2}	1.3×10^{-2}	計 3.3×10 ⁻²	Bq/ cm
原	再		最高濃度 (Bq/cm³)	*	*	*		129 J
子		筒	平 均 濃 度 (Bq/cm³)	*	*	*	*	3.7×10^{-8}
力			放 実	0	0	0	計 0	Bq/cm ³
機	処		量 不 筷 出 分 量 (GBq)	1.0×10^{-2}	1.0×10^{-2}	1.3×10^{-2}	計 3.3×10 ⁻²	
構			最高濃度 (Bq/cm³)	*	*	*		⁸⁵ Kr
サ	理		平 均 濃 度 (Bq/cm³)	*	*	*	*	2.4×10^{-3}
イ			放 実	0	0	0	計 0	Bq/cm³
ク		第	量 / 不 筷 出 分 量 / (GBq)	1.9×10 ²	1.8×10 ²	2.0 × 10 ²	計 5.7×10 ²	
	施	1	最高濃度 (Bq/cm³)	*	*	*		³ H
ル		付	平均濃度 (Bq/cm³)	*	*	*	*	3.7×10^{-5}
エ			放 実 測 分 出 (GBq)	0	0	0	計 0	Bq/cm³
研	武	属	一 不 検 出 分 (GBq)	2.5	2.7	3.4	計 8.6	·
		 	最高濃度 (Bq/cm³)	*	*	*		¹⁴ C
		排	平 均 濃 度 (Bq/cm³)	*	*	*	×	4.0×10^{-5}
		気	放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm³
			工作。 量不作出分(GBq)	2.7	2.9	3.6	計 9.2	
		筒	最高濃度 (Bq/cm³)	*	*	*		¹³¹ I
			平 均 濃 度 (Bq/cm³)	*	*	*	≥1 .	3.7×10^{-8}
			放 実 測 分 (GBq) 出 天 松 出 ひ	0	0	0	計 0	Bq/cm³
			工量不検出分 (GBq)	2.5×10^{-3}	2.7×10^{-3}	3.4×10^{-3}	計 8.6×10 ⁻³	·

 測 定 者	施	 设 名		項	—————————————————————————————————————		放 出	状 況		分析核種
者	/ 地	以 17		炽		1 月	2 月	3 月	平 均	及びD L
		第	最		濃 度 /cm³)	*	*	×		¹²⁹ I
		1付属排気筒	平		濃 /cm³)	*	*	*	*	3.7×10^{-8}
		排気	放出		測 分 (GBq)	0	0	0	計 0	Bq/cm ³
		筒	量	不	検 出 分 (GBq)	2.5×10^{-3}	2.7×10^{-3}	3.4×10^{-3}	計 8.6×10 ⁻³	Dq∕ Ciii
			最	高 (Bq/	濃 /cm³)	*	*	×		⁸⁵ Kr
			平	均 (Bq/	濃 度 /cm³)	*	*	×	*	2.4×10^{-3}
	再		放出	実	測 分 (GBq)	0	0	0	計 0	2.4×10 Bq/cm ³
			量	不	検 出 分 (GBq)	2.3×10^{2}	2.2×10^{2}	2.3×10 ²	計 6.8×10 ²	Dq/ cm²
原			最	高 (Bq/	濃 度 /cm³)	*	*	×		$^3\mathrm{H}$
子	処		平	均 (Bq/	濃 度 /cm³)	*	*	*	*	3.7×10^{-5}
力		第	放出	実	測 分 (GBq)	0	0	0	計 0	3.7×10^{-3} Bq/cm ³
機	理	2	量	不	検 出 分 (GBq)	3.1	3.2	4.0	計 1.0×10	Dq/ cm
構	生	付	最	高 (Bq/	濃 度 /cm³)	*	*	×		¹⁴ C
···		属	平	均 (Bq/	濃 度 /cm³)	×	*	×	*	4.0×10^{-5}
,	施	 排	放出	実	測 分 (GBq)	0	0	0	計 0	4.0 × 10 Bq/cm ³
イ			量	不	検 出 分 (GBq)	3.3	3.5	4.3	計 1.1×10	Dq/ cm
ク		気	最		濃 /cm³)	*	*	×		¹³¹ I
ル	設	筒	平		濃 度 /cm³)	*	*	×	*	3.7×10^{-8}
工			放出		測 分 (GBq)	0	0	0	計 0	Bq/cm ³
研			量		検 出 分 (GBq)	3.1×10^{-3}	3.2×10^{-3}	4.0×10^{-3}	計 1.0×10 ⁻²	Dq/ cm
			最	高 (Bq	濃 /cm³)	*	*	×		¹²⁹ I
			平		濃 /cm³)	*	*	×	*	3.7×10^{-8}
			放出	実	測 分 (GBq)	0	0	0	計 0	3.7×10 Bq/cm ³
			量		検 出 分 (GBq)	3.1×10^{-3}	3.2×10^{-3}	4.0×10^{-3}	計 1.0×10 ⁻²	Dq/ CIII
	高レ	ベル	最	高 (Bq/	濃 /cm³)	*	*	*		希ガス
	放射性	生物質	平	· 1	濃 /cm³)	*	*	*	*	$\left[\begin{smallmatrix} 85 \mathrm{Kr} \\ 133 \mathrm{Xe} \end{smallmatrix} \right]$
	研究 (CP		放出	実	測 分 (GBq)	0	0	0	計 0	2.4×10^{-3}
	Cr	1. /	量	不	検 出 分 (GBq)	1.7×10 ²	1.5×10^{2}	1.1×10 ²	計 4.3×10 ²	Bq/cm ³

測	17 -18 6-	<i>T</i>		放 出	 状 况		分析核種
測定者	施設名	項目	1 月	2 月	3 月	平 均	及びDL
		最高濃度 (Bq/cm³)	*	*	*		277
原 子		平 均 濃 度 (Bq/cm³)	×	×	*	*	3 H 3.7×10^{-5}
力機	高レベル	放 実 測 分 (GBq)	0	0	0	計 0	3.7 × 10 ° Bq/cm ³
構サ	放射性物質	量 不 検 出 分 量 (GBq)	2.3	2.3	1.9	計 6.5	Dq∕ cm
イ	研究施設	最高濃度 (Bq/cm³)	*	*	*		131 T
クルエ	(CPF)	平 均 濃 度 (Bq/cm³)	×	×	*	*	3.7×10^{-8}
田 研		放 実 測 分 出 (GBq)	0	0	0	計 0	3.7 × 10 ° Bq/cm ³
		一 不 検 出 分 量 (GBq)	2.3×10^{-3}	2.3×10^{-3}	1.9×10^{-3}	計 6.5×10 ⁻³	Dq∕ Cin
		最高濃度 (Bq∕cm³)	*	*	×		希ガス
	J M T R	平 均 濃 度 (Bq/cm³)	*	*	*	*	〔主に ⁴¹ Ar〕
	J W I K	放 実 測 分 (GBq)	0	0	0	計 0	3.0×10^{-3}
		工 量 不検出分 (GBq)	1.5×10^{2}	2.1×10^{2}	2.2×10^{2}	計 5.8×10 ²	Bq/cm³
		最高濃度 (Bq/cm³)	*	*	*		希ガス
(注3)		平 均 濃 度 (Bq/cm³)	*	*	*	*	(主に ⁸⁸ Kr ₁₃₈ Xe)
原		放 実 測 分 (GBq)	0	0	0	計 0	1.9×10^{-3}
子		工 量 不検出分 (GBq)	1.3×10^{2}	1.2×10^{2}	1.3×10 ²	計 3.8×10 ²	Bq/cm³
 力		最高濃度 (Bq/cm³)	*	*	*		¹³¹ I
	H T T R	平 均 濃 度 (Bq/cm³)	*	*	×	*	1.5×10^{-9}
機		放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm ³
構		工	9.5×10^{-5}	8.3×10^{-5}	7.8×10^{-5}	計 2.6×10 ⁻⁴	Dq/ CIII
大		最高濃度 (Bq∕cm³)	*	*	*		³ H
洗洗		平 均 濃 度 (Bq/cm³)	×	×	*	*	2.1×10^{-5}
		放 実 測 分 出 (GBq)	0	0	0	計 0	
		不検出分 量(GBq)	1.3	1.3	1.3	計 3.9	Bq/cm³
	照射燃料	最高濃度 (Bq/cm³)					希ガス
	照射燃料集合体	平 均 濃 度 (Bq/cm³)					(主に ⁸⁵ Kr)
	試験施設	放 実 測 分 (GBq)	0	0	0	計 0	1.3×10 ⁻³
	(FMF)	出 不 検 出 分 量 (GBq)	0	0	0	計 0	Bq/cm³

測		~ ~ 17		 放 出	状 況		分析核種
測定者	施設名	項目	1 月	2 月	3 月	平 均	及びDL
	照射燃料	最高濃度 (Bq/cm³) 平均濃度 (Bq/cm³)					131 I
(注3)	試験施設 (FMF)	放 実 測 分 出 (GBq)	0	0	0	計 0	5.2×10^{-10} Bq/cm ³
原	(1 1411)	T T K H H H H H H H H H	0	0	0	計 0	Dq/ CIII
子		最高濃度 (Bq/cm³)	*	*	*		希ガス
力		平 均 濃 度 (Bq/cm³)	*	*	*	*	(主に ⁴¹ Ar) 85Kr
機構		放 実	0	0	0	計 0	1.3×10 ⁻³
十大	高速実験炉	量 不 検 出 分 (GBq)	1.3×10^{2}	1.3×10^{2}	1.3×10 ²	計 3.9×10 ²	Bq/cm³
洗洗	「常陽」	最高濃度 (Bq/cm³)	*	*	*		131 T
		平 均 濃 度 (Bq/cm³)	*	*	*	*	2.2×10^{-9}
		放 実	0	0	0	計 0	Bq/cm^3
		量	1.7×10^{-4}	1.8×10^{-4}	1.8×10^{-4}	計 5.3×10 ⁻⁴	Dq/ Cili
原		最高濃度 (Bq/cm³)	*	*	*		³ H
原子力機構那	J T − 6 0 「 臨界プラズマ]	平 均 濃 度 (Bq/cm³)	*	*	*	*	2.5×10^{-5}
構那	上試験装置 実 験 棟	放 実	0	0	0	計 0	Bq/cm ³
珂		量 个 検 出 分 量 (GBq)	2.5	2.4	3.5	計 8.4	Dq/ OIII
		最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
		平 均 濃 度 (Bq/cm³)	*	*	*	*	1.5×10^{-9}
		放 実	0	0	0	計 0	Bq/cm ³
(注4)	東海発電所	量 不 検 出 分 (GBq)	1.8×10^{-4}	1.8×10^{-4}	1.3×10^{-4}	計 4.9×10 ⁻⁴	24/ 0111
原	排 気 筒	最高濃度 (Bq/cm³)	×	×	*		¹³⁷ Cs
		平 均 濃 度 (Bq/cm³)	×	×	*	*	1.2×10^{-9}
		放 実	0	0	0	計 0	Bq/cm ³
電		量 个 筷 出 分 (GBq)	1.6×10^{-4}	1.3×10^{-4}	1.1×10^{-4}	計 4.0×10 ⁻⁴	_ 4/ 0111
		最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
	東海発電所	平 均 濃 度 (Bq/cm³)	×	*	*	*	1.7×10^{-9}
	その他排気口	放 実	0	0	0	計 0	Bq/cm ³
		T 検出分量 (GBq)	2.2×10^{-4}	2.1×10^{-4}	2.3×10^{-4}	計 6.6×10 ⁻⁴	29/ 0111

測		~# D		 放 出			分析核種	
測定者	施設名	項目	1 月	2 月	3 月	平 均	及びDL	
		最高濃度 (Bq/cm³)	*	*	*		¹³⁷ Cs	
	東海発電所	平 均 濃 度 (Bq/cm³)	*	*	*	*	1.3×10^{-9}	
(注4)	その他排気口	放 実 測 分 出 (GBq)	0	0	0	計 0	1.5 × 10 ° Bq / cm ³	
原		量 不 検 出 分 (GBq)	1.7×10^{-4}	1.7×10^{-4}	1.7×10^{-4}	計 5.1×10 ⁻⁴	Dq/ CIII	
		最高濃度 (Bq/cm³)	*	×	*		希ガス 「主に ⁸⁵ Kr]	
		平 均 濃 度 (Bq/cm³)	×	*	*	*	133Xe	
		放 実	0	0	0	計 0	7.2×10^{-4}	
	東海第二	量 不 検 出 分 (GBq)	5.0 × 10 ²	4.6×10 ²	4.9 × 10 ²	計 1.5×10 ³	Bq/cm³	
電	発 電 所	最高濃度 (Bq/cm³)	×	*	*		¹³¹ I	
		平 均 濃 度 (Bq/cm³)	×	*	*	*	2.9×10^{-9}	
		放 実	0	0	0	計 0	Bq/cm ³	
		一 不 検 出 分量 (GBq)	2.1×10^{-3}	1.9×10^{-3}	2.0×10^{-3}	計 6.0×10 ⁻³	-	
 住		最高濃度 (Bq/cm³)	×	*	*		U	
友	技術センター	平 均 濃 度 (Bq/cm³)	×	*	*	*	6.1×10^{-11}	
鉱山	排 気 筒	放 実	0	0	0	計 0	Bq/cm³	
		量 不 検 出 分 (GBq)	微	微	微	計 微	T	
		最高濃度 (Bq/cm³)	×	*	*		U	
	第1管理棟	平 均 濃 度 (Bq/cm³)	×	×	*	*	3.7×10^{-10}	
	(No.1排気筒)	放 実	0	0	0	計 0	Bq/cm³	
(注5)		量 不 検 出 分 (GBq)	微	微	微	計 微	_ 4 /	
J		最高濃度 (Bq/cm³)	*				U	
C	第1管理棟	平 均 濃 度 (Bq/cm³)	×			*	3.7×10^{-10}	
	(No.2排気筒)	放 実	0			計 0	Bq/cm ³	
0		量 不 検 出 分 (GBq)	微			計 微 (数	-1/ V	
		最高濃度 (Bq/cm³)	×	*	*		U	
	第2管理棟		平 均 濃 度 (Bq/cm³)	×	*	*	*	3.7×10^{-10}
		放 実	0	0	0	計 0	Bq/cm ³	
		T 不 検 出 分 量 (GBq)	微	微	微	計機	24, 0111	

測		- -		放出	状 況		分析核種
測定者	施設名	項目	1 月	2 月	3 月	平 均	及びD L
		最高濃度 (Bq/cm³)	*	*	×		U
	第3管理棟	平 均 濃 度 (Bq/cm³)	×	*	*	*	3.7×10^{-10}
(注5)	77 0 百 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	放 実 測 分 出	0	0	0	計 0	Bq/cm ³
J		量	微	微	微	計機	24, 6111
		最高濃度 (Bq/cm³)	*	*	*		U
С	第4管理棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	3.7×10^{-10}
		放 実 測 分 出 (GBq)	0	0	0	計 0	Bq/cm³
		量	微	微	微	計 微	•
0		最高濃度 (Bq/cm³)					U
	固体廃棄物	平 均 濃 度 (Bq/cm³)					3.7×10^{-10}
	処 理 棟	放 実	0	0	0	計 0	Bq/cm³
		不検出分 量(GBq)	0	0	0	計 0	
		最高濃度 (Bq/cm³)	*	*	*		U
	転換工場	平 均 濃 度 (Bq/cm³)	*	*	*	×	1.0×10^{-10}
		放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm³
三		一年 一年 一年 一年 一年 一年 一年 一年 一年 一年 一年 一年 一年 一	微	微	微	計 微	
		最高濃度 (Bq/cm³)	*	*	*		U
	成形工場	平 均 濃 度 (Bq/cm³)	*	*	*	<u></u> ×	1.0×10^{-10}
菱		放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm³
		一工	微	微	微	計 微	
		最高濃度 (Bq/cm³)	*	*	*		U
原	第1廃棄物	平 均 濃 度 (Bq/cm³)	*	*	*	≥1 ×	1.0×10^{-10}
	処 理 所	放 実 測 分 GBq)	0	0	0	計 0	Bq/cm³
		一工	微	微	微	計 微	
燃		最高濃度 (Bq/cm³)	*	*	*		U
	第2廃棄物	平 均 濃 度 (Bq/cm³)	*	*	*	≥1 ×	1.0×10^{-10}
	処 理 所	放 実 測 分 (GBq) 出 不 検 出 分 (GBq) コー	0	0	0	計 0	Bq/cm³
		The second of t	微	微	微	計微	

測定者	施設名				放出	状 況		分析核種
		項目		1 月	2 月	3 月	平均	及びDL
三		最高濃 (Bq/cm³)	度	*	*	*		
-t-t-	燃料加工	平 均 濃 (Bg/cm ³)	度	*	*	*	*	U
	試 験 棟	放 実 測 (GBq)	分	0	0	0	計	1.0×10^{-10}
燃燃		出 不 検 出 量 (GBq)	分	微	微	微		Bq/cm³
		最高濃	度	*	*	*	1/100	
		(Bq/cm³) 平 均 濃 (Bq/cm³)	度	*	*	×	*	³ H
		放 実 測 (GBq)	分	0	0	0	計	1.9×10^{-5}
		出 不 検 出 (GBq)	分	微	微	微		Bq/cm³
第	集合排気筒	最 高 濃 (Bq/cm ³)	度	×	*	*	THE	
		平 均 濃 (Bq/cm ³)	度	*	*	*	*	¹⁴ C
		放 実 測	分	0	0	0	計 0	3.7×10^{-6}
		出 不 検 出 量 (GBq)	分	微	微	微	計機	Bq/cm³
		最 高 濃 (Bq/cm ³)	度	2.1×10^{-5}	4.3×10^{-5}	4.7×10^{-5}	194	_
化		平 均 濃 (Bq/cm ³)	度	1.9×10^{-5}	2.1×10^{-5}	2.1×10^{-5}	2.0×10^{-5}	³ H
		放 実 測	分	7.5×10^{-3}	7.2×10^{-2}	9.4×10^{-2}	計 1.7×10 ⁻¹	1.9×10^{-5}
学	第 4 棟	出 不 検 出 (GBq)	分	微	微	微	計微	Bq∕cm³
	排気筒	最高濃 (Bq/cm³)	度	7.7×10^{-5}	2.2×10^{-5}	3.1×10^{-5}		¹⁴ C
		平 均 濃 (Bq/cm³)	度	6.8×10^{-6}	4.4×10^{-6}	6.0×10^{-6}	5.8×10^{-6}	
		放 実 測 (GBq)	分	1.4×10^{-1}	3.0×10^{-2}	1.0×10^{-1}	計 2.7×10 ⁻¹ 計	3.7×10^{-6}
		出 不 検 出 (GBq)	分	微	微	微	計微	Bq∕cm³
		最 高 濃 (Bq/cm³)	度	*	2.0×10^{-3}	*		希ガス
		平 均 濃 (Bq/cm³)	度	×	2.0×10^{-3}	*	2.0×10^{-3}	〔主に ⁸⁵ Kr〕
N		放 実 測 (GBq)	分	0	7.3×10^{-2}	0	計 7.3×10 ⁻²	2.0×10^{-3}
	照射後試験棟	出 不 検 出 (GBq)	分	1.1×10 ²	1.0×10 ²	1.1×10 ²	計 3.2×10 ²	Bq/cm³
D	(F 棟)	最 高 濃 (Bq/cm³)	度	*	*	*		¹³¹ I
		平 均 濃 (Bq/cm³)	度	*	*	×	*	2.6×10^{-10}
С		放 実 測	分	0	0	0	計 0	\sim 4.1 × 10 ⁻¹⁰
		出 不検出 量 (GBq)	分	微	微	微	計微	Bq/cm³

測				 放 出	 状 况		分析核種
測定者	施設名	項目	1 月	2 月	3 月	平均	及びD L
		最高濃度 (Bg/cm³)	9.6×10^{-9}	1.2×10^{-8}	3.3×10^{-9}		¹³¹ I
	化学分析棟	平 均 濃 度 (Bg/cm³)	3.4×10^{-9}	4.7×10^{-9}	2.0×10^{-9}	3.4×10^{-9}	7.6×10^{-10}
	(R 棟)	放 実 測 分	3.9×10^{-5}	6.0×10^{-5}	3.4×10^{-5}	計 1.3×10 ⁻⁴	\sim 1.8 × 10 ⁻⁹
N		出	微	0	0	計微	Bq/cm³
		最高濃度 (Bq/cm³)	*	*	*		U
	ウラン実験棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	1.5×10^{-10}
D	(U 棟)	放 実 測 分 (GBq)	0	0	0	計 0	\sim 1.9 × 10 ⁻¹⁰
		出	微	微	微	計微	Bq/cm³
С		最高濃度 (Bq/cm³)	*	*	*		U
	燃料試験棟	平 均 濃 度 (Bq/cm³)	×	*	*	*	4.5×10^{-11}
	(A 棟)	放 実 測 分 (GBq)	0	0	0	計 0	7.5×10^{-11}
		出	微	微	微	計微	Bq/cm³
		最高濃度 (Bq/cm³)		*			41.4
(注6)		平 均 濃 度 (Bg/cm³)		*		*	⁴¹ Ar
東	原子炉棟	放 実 測 分 (GBq)	0	0	0	計 0	4.0×10^{-3}
		出	0	2.4×10^{-4}	0	計 2.4×10 ⁻⁴	Bq∕cm³
		最高濃度 (Bq/cm³)	*	*			12 NT + 15 O
	こといわせ	平 均 濃 度 (Bq/cm³)	*	*		*	¹³ N+ ¹⁵ O
大	ライナック棟	放 実 測 分 (GBq)	0	0	0	計 0	2.0×10^{-3}
		出	1.3×10^{-1}	1.2×10^{-2}	0	計 1.4×10 ⁻¹	Bq/cm³
		最高濃度 (Bq/cm³)	*	*	1.5×10^{-10}		U
原	加工工場	平 均 濃 度 (Bq/cm³)	*	*	1.3×10^{-10}	1.3×10^{-10}	1.3×10^{-10}
		放 実 測 分 出 (GBq)	0	0	2.4×10 ²	計 2.4×10 ²	Bq/cm^3
燃燃		量 不 筷 出 分 量 (GBq)	微	微	微	計微	Dq/ CIII
/2hi		最高濃度 (Bq/cm³)	*	*	*		U
_	廃棄物処理棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	1.3×10^{-10}
工	/元 木 7/0 / C-P-主 1 本	放 実 測 分 出 (GBq)	0	0	0	計 0	Bq/cm^3
		工 不 検 出 分 (GBq)	微	微	微	計微	Dd∖ (III.

測定者	施設名	項目		放 出	状 況		分析核種
产者	旭 议 石	- 現 B	1 月	2 月	3 月	平 均	及びDL
		最高濃度 (Bq/cm³)	*	*	*		U
原燃	HTR燃料	平 均 濃 度 (Bq/cm³)	*	*	*	*	1.3×10^{-10}
	製造施設	放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm^3
		T 検出分 量 (GBq)	微	微	微	計微	Dq/ CIII
		最高濃度 (Bq/cm³)	*	*	*		U
三	開発試験	平 均 濃 度 (Bq/cm³)	*	*	*	*	4.0×10^{-10}
菱	第 I 棟	放 実 測 分 (GBq)	0	0	0	計 0	
マテ		T 検出分 量 (GBq)	微	微	微	計微	Bq/cm³
'		最高濃度 (Bq/cm³)	*	*	*		IJ
ア	開発試験	平 均 濃 度 (Bq/cm³)	*	*	*	*	4.0×10^{-10}
ル	第 Ⅱ 棟	放 実 測 分 (GBq)	0	0	0	計 0	$8q/cm^3$
		The second of t	微	微	微	計微	Dq/ CIII
(注7)		最高濃度 (Bq/cm³)	3.9×10^{-4}	3.2×10^{-3}	1.2×10^{-3}		希ガス
日本	照 射 後	平 均 濃 度 (Bq/cm³)	4.4×10^{-5}	1.3×10^{-3}	5.7×10^{-5}	4.7×10^{-4}	[85Kr]
核	試験施設	放 実 測 分 出 (GBq)	1.2	3.3×10	1.6	計 3.6×10	1.0×10^{-4}
燃		T T 検 出 分 GBq)	2.7	2.6	2.7	計 8.0	Bq∕cm³

- (注1) 平均濃度は、検出された放出量を月間排気量で除した値
- (注2)原子力機構原科研

JRR-3:1月,2月,3月は施設定期検査のため原子炉停止,希ガスの放出なし。

JRR-4:1月、2月、3月は反射体要素に係る点検作業のため原子炉停止、希ガスの放出なし。

NSSR:1月,2月は施設定期検査のため原子炉停止,希ガスの放出なし。

(注3) 原子力機構大洗

JMTR, HTTR, 高速実験炉「常陽」: 1月, 2月, 3月は施設定期検査。 照射燃料集合体試験施設: 1月, 2月, 3月は, 放出を伴う運転なし。

(注4)原電

東海発電所その他排気口:使用済燃料冷却池建屋、サービス建屋等からの排気。

(注5) JCO

1月23日に第1管理棟No.2排気系統の排気設備を撤去し、従来の第1管理棟No.1排気筒へ統合した。 固体廃棄物処理棟:今期は核燃料物質等の処理がなく運転しなかったため、放出なし。

(注6) 東 大

原子炉棟:1月,3月は核燃料体検査における冷却期間のため原子炉の運転なし。ライナック棟:3月はメンテナンスのためライナックの運転なし。

(注7) 日本核燃

1月,2月,3月の希ガスの放出は、燃料棒切断試験および燃料ペレットの溶解試験による。

3-1-1′ 排気中の放射性核種分析結果(その他検出された核種)

測定者	施設名	項目		放 出	状 況		分析核種
者		火 口	1 月	2 月	3 月	平 均	及びDL
(注1) 原大		最高濃度 (Bq/cm³)	3.2×10^{-5}				³ H
原子力機構洗	J M T R	平 均 濃 度 (Bq/cm³)	3.2×10^{-5}				2.1×10^{-5}
横横洗		放出量(実測分) (GBq)	1.7			計 1.7	Bq/cm³
		最高濃度 (Bq/cm³)	8.3×10^{-6}	6.9×10^{-6}	8.8×10^{-6}		³ H
	東海発電所	平 均 濃 度 (Bq/cm³)	6.2×10^{-6}	6.3×10^{-6}	8.0×10^{-6}		1.4×10^{-7}
(注2)		放出量(実測分) (GBq)	7.9×10^{-1}	7.4×10^{-1}	7.5×10^{-1}	計 2.3	Bq/cm³
原	* * * * * * * * * * * * * * * * * * *	最高濃度 (Bq/cm³)	1.6×10^{-5}	1.7×10^{-5}	2.9×10^{-5}		³ H
	東海第二	平 均 濃 度 (Bq/cm³)	1.4×10^{-5}	1.6×10^{-5}	2.2×10^{-5}		2.7×10^{-7}
電	76 76 ///	放出量(実測分) (GBq)	9.6	1.1×10	1.5×10	計 3.6×10	Bq/cm³
		最高濃度 (Bq/cm³)	8.2×10^{-7}	8.2×10^{-7}	5.0×10^{-6}		³ H
	廃棄物処理 建 屋	平 均 濃 度 (Bq/cm³)	5.8×10^{-7}	5.0×10^{-7}	2.3×10^{-6}		3.0×10^{-7}
		放出量(実測分) (GBq)	1.2×10^{-1}	8.9×10^{-2}	4.5×10^{-1}	計 6.6×10 ⁻¹	Bq/cm³

(注1) 原子力機構大洗

JMTR: ³H 炉プール・カナル水の蒸発による放出。

(注2)原電

東海発電所: ³H 炉内グラファイトの不純物の放射化による。 東海第二発電所: ³H 冷却材中の重水素の放射化による。 廃棄物処理建屋: ³H 可燃性廃棄物の焼却処理等による。

3-1-2 排気中の全β放射能測定結果

測定者	施設名	項目		放 出	状 況		主 な 放出核種
者	7/E IX 1		1 月	2 月	3 月	平 均	及びDL
		最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
	材料試験棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	7.7×10^{-11}
	(R 棟)	放 実 測 分 (GBq)	0	0	0	計 0	5.8×10^{-10}
N		一本 一本 一(GBq)	微	微	微	計微	Bq/cm³
		最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
	化学分析棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	3.7×10^{-11}
D	(R 棟)	放 実 測 分 (GBq)	0	0	0	計 0	\sim 5.0 × 10 ⁻¹¹
		出不検出分 (GBq)	微	微	微	計微	Bq/cm³
С		最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
	燃料試験棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	3.8×10^{-11}
	(A 棟)	放 実 測 分 (GBq)	0	0	0	計 0	\sim 6.2 × 10 ⁻¹¹
		出 不 検 出 分 (GBq)	微	微	微	計微	Bq/cm³
		最高濃度 (Bq/cm³)	*	*	*		127.0
I./ .	那珂湊支所	平 均 濃 度 (Bq/cm³)	*	*	*	*	^{137}Cs 9.0×10^{-9}
放	第1研究棟	放 実 測 分 (GBq)	0	0	0	計 0	9.0×10^{-3} Bq/cm ³
医		田 不 検 出 分 (GBq)	微	微	微	計微	Bq/ Cili
		最高濃度 (Bq/cm³)	*	*	*		127.0
研	那珂湊支所	平 均 濃 度 (Bq/cm³)	*	*	*	*	^{137}Cs 9.0×10^{-9}
191	第2研究棟	放 実 測 分 (GBq)	0	0	0	計 0	9.0×10^{-3} Bq/cm ³
		一量不検出分 (GBq)	微	微	微	計微	24, 0111
		最高濃度 (Bq/cm³)	×	*	*		60Co
東 北	ホットラボ棟	平 均 濃 度 (Bq/cm³)	*	*	*	*	⁵⁹ Fe
大	-4· / / 4/1本 	放 実 測 分 (GBq)	0	0	0	計 0	2.5×10^{-9}
		田 不 検 出 分 (GBq)	7.1×10^{-5}	6.6×10^{-5}	7.1×10^{-5}	計 2.1×10 ⁻⁴	Bq/cm³

測定者	施設名	項目		放 出	状 況		主 な 放出核種
者		次 · 口	1 月	2 月	3 月	平 均	及びDL
		最高濃度 (Bq/cm³)	*	*	*		500 FF
	第 2 研 究 棟	平 均 濃 度 (Bq/cm³)	*	×	*	×	60Co等 1.7×10 ⁻⁹
 揮	第 Z 初 充 馃 	放 実 測 分 (GBq)	0	0	0	計 0	Bq/cm^3
1 1 1 中		工 量 不 後 出 分 (GBq)	9.1×10^{-6}	9.7×10^{-6}	9.8×10^{-6}	計 2.9×10 ⁻⁵	Dq/ CIII
三		最高濃度 (Bq/cm³)	*	*	*		coo to
二菱マテリア	開発試験	平 均 濃 度 (Bq/cm³)	*	×	*	×	60Co等 1.5×10-9
1 /	第 Ⅳ 棟	放 実 測 分 (GBq)	0	0	0	計 0	1.5 × 10 3 Bq/cm ³
ル		出 不 検 出 分 (GBq)	微	微	微	計微	Dq/ CIII

3-1-2′ 排気中の全β放射能測定結果

測定者	施設名	項目		放出	 状 况		D L
と	施設名	項目	1 月	2 月	3 月	平 均	D L
		最高濃度 (Bq/cm³)	×	*	*		3.3×10 ⁻¹⁰
	J R R - 2	平 均 濃 度 (Bq/cm³)	×	×	*	*	3.5×10^{-10} Bq/cm ³
原		最高濃度 (Bq/cm³)	×	×	*		7.0×10 ⁻¹¹ ∼
子	J R R - 3	平 均 濃 度 (Bq/cm³)	×	×	*	*	8.4×10^{-11} Bq/cm ³
カ	J R R - 4	最高濃度 (Bq/cm³)	*	*	*		1.2×10^{-10}
 機	JKK - 4	平 均 濃 度 (Bq/cm³)	*	*	*	*	Bq/cm³
構	N S R R	最高濃度 (Bq/cm³)	*	*	*		1.5×10^{-10}
原	N S K K	平 均 濃 度 (Bq/cm³)	*	*	*	×	1.8×10^{-10} Bq/cm ³
 科	燃料試験施設	最高濃度 (Bq/cm³)	*	*	*		3.8×10 ⁻¹¹ ∼
研	<i>於</i> 公本十百八 <i>時</i> 失 / 他	平 均 濃 度 (Bq/cm³)	*	*	*	*	4.1×10^{-11} Bq/cm ³
	NUCEF	最高濃度 (Bq/cm³)	*	*	*		2.6×10^{-11}
	NOCET	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³
	再処理施設	最高濃度 (Bq/cm³)	×	*	*		1.5×10^{-9}
原子 子力	主排気筒	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³
原子力機構サ	再処理施設第 1 付属	最高濃度 (Bq/cm³)	×	*	*		1.5×10^{-9}
イク	排気筒	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³
ル工研	再処理施設第2付属	最高濃度 (Bq/cm³)	×	*	*		1.5×10^{-9}
	排気筒	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³
原原	J M T R	最高濃度 (Bq/cm³)	×	*	*		8.5×10^{-11}
子 力	J M T R	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³
原子力機構大洗	H T T R	最高濃度 (Bq/cm³)	*	*	*		8.5×10^{-11}
/ / / / / / / / / / / / / / / / / / /	11 1 1 1	平 均 濃 度 (Bq/cm³)	×	*	*	*	Bq/cm³

測	拉 凯 夕	石 口		放出			D I
測定者	施設名	項目	1 月	2 月	3 月	平 均	D L
原	照射燃料集合体試験	最高濃度 (Bq/cm³)	*	*	*		4.6×10^{-11}
原子力機構大洗	施設(FMF)	平 均 濃 度 (Bq/cm³)	*	*	*	*	Bq/cm³
横大	高速実験炉	最高濃度 (Bq/cm³)	*	*	*		2.4×10^{-10}
洗	「常 陽」	平 均 濃 度 (Bq/cm³)	*	*	*	×	Bq/cm³
	東海第二	最高濃度 (Bq/cm³)	*	*	*		6.9×10^{-10}
原	発 電 所	平 均 濃 度 (Bq/cm³)	×	×	*	×	Bq/cm³
電電	廃 棄 物	最高濃度 (Bq/cm³)	×	×	*		5.5×10^{-10}
	処 理 建 屋	平 均 濃 度 (Bq/cm³)	*	*	*	×	Bq/cm³
東	原子炉棟	最高濃度 (Bq/cm³)	*	*	*		7.0×10^{-7}
大	原 丁 炉 馃	平 均 濃 度 (Bq/cm³)	×	×	*	×	Bq∕cm³
N	照射後試験棟	最高濃度 (Bq/cm³)	×	×	*		5.1×10 ⁻¹¹
D C	(F 棟)	平 均 濃 度 (Bq/cm³)	*	*	*	×	8.3×10^{-11} Bq/cm ³

3-1-3 排気中の全α放射能測定結果

測定者	施設名	項目		放 出	状 況	•	主 な 放出核種
者	ル 収 石	垻 口	1 月	2 月	3 月	平 均	及びDL
		最高濃度 (Bq/cm³)	*	×	*		
 核	BB 3% 1年	平 均 濃 度 (Bq/cm³)	*	×	×	*	Pu, U
管	開発棟	放 実 測 欠 (GBq)	0	0	0	計 0	1.8×10^{-11} Bq/cm ³
セ		出	微	微	微	計微	1, -1,
ン		最高濃度 (Bq/cm³)	*	×	×		
タ	don 17 Inc. Ida	平 均 濃 度 (Bq/cm³)	*	×	×	*	Pu, U
1	新分析棟	放 実 測 分	0	0	0	計 0	2.5×10^{-11} Bq/cm ³
		出	微	微	微	計微	- 4 ****
原		最高濃度 (Bq/cm³)	*	×	×		Pu
原子力機構原科研	燃料サイクル 安全工学	平 均 濃 ß (Bq/cm³)	* ×	×	×	×	1.3×10 ⁻¹¹ ~
 	研究施設 (NUCEF)	放 実 測 欠	0	0	0	計 0	1.4×10^{-11}
研		出不検出分 (GBq)	微	微	微	計微	Bq/cm³
原子力機	プルトニウム燃料 第 一 開 発 室,	最高濃度 (Bq/cm³)	*	×	×		
	ポープルトニウム燃料 第二開発室,	平 均 濃 馬 (Bq/cm³)	*	×	×	×	Pu
構サイクル	プルトニウム燃料 第 三 開 発 室,	放 実 測 欠	0	0	0	計 0	1.5×10^{-10} Bq/cm ³
ルエ研	プルトニウム廃棄物処理開発施設	出 不検出分 (GBq)	5.3×10^{-5}	5.3×10^{-5}	6.6×10^{-5}	計 1.7×10 ⁻⁴	_

3-2 排 水

3-2-1 排水中の放射性核種分析結果

測定者	評価対象	排出基準
施設者	月平均濃度	法 令 値

(主要放出核種)

測	+1h:	ماد	進		~ 口		放 出	状 況		分析核種
測定者	护	水	侢		項目	1 月	2 月	3 月	平 均	及びD L
				平	均 濃 度 (Bq/cm³)	*	*	*	*	60 Co 3.1×10^{-3}
	第		1	放出	実 測 分 (MBq)	0	0	0	計 0	3.1×10^{-3}
				量	不検出分 (MBq)	7.4×10^{-2}	4.4×10^{-2}	微	計 1.2×10 ⁻¹	Bq/cm ³
				平	均 濃 度 (Bq/cm³)	8.2×10^{-2}	6.5×10^{-3}	8.3×10^{-2}	6.0×10^{-2}	3 H 8.3×10^{-2}
(注1) 原				放出	実 測 分 (MBq)	2.6 × 10 ⁴	1.8×10 ³	2.7×10 ⁴	計 5.5×10 ⁴	\sim 1.9 × 10 ⁻¹
				量	不検出分 (MBq)	8.9	7.1	1.4×10	計 3.0×10	Bq/cm ³
子				平	均 濃 度 (Bq/cm³)	*	*	*	*	¹⁴ C
力				放出	実 測 分 (MBq)	0	0	0	計 0	1.1×10^{-1} \sim 1.2×10^{-1}
機	第		2	量	不検出分 (MBq)	3.4×10^{2}	2.0×10^{2}	4.8×10^{2}	計 1.0×10 ³	Bq/cm ³
構	 		2	平	均 濃 度 (Bq/cm³)	*	*	*	*	60Co 1.9×10⁻³
原				放出	実 測 分 (MBq)	0	0	0	計 0	$\frac{1.9 \times 10^{-3}}{\sim}$ 3.5 × 10 ⁻³
				量	不検出分 (MBq)	8.5	4.4	1.1×10	計 2.4×10	Bq/cm ³
科 				平	均 濃 度 (Bq/cm³)	*	*	*	*	¹³⁷ Cs 1.9×10 ⁻³
研				放出	実 測 分 (MBq)	0	0	0	計 0	$\frac{1.9 \times 10^{-3}}{\sim}$ 2.8×10^{-3}
				量	不検出分 (MBq)	7.4	3.7	9.3	計 2.0×10	Bq/cm^3
				平	均 濃 度 (Bq/cm³)	*	*	*	*	⁶⁰ Co
	第		3	放山	実 測 分 (MBq)	0	0	0	計 0	1.9×10^{-3} \sim 2.9×10^{-3}
				出量	不検出分 (MBq)	5.4×10^{-2}	微	微	計 5.4×10 ⁻²	2.9×10^{-3} Bq/cm ³

測	T-II-	t.	\#:		~# D		放 出	 状 況		分析核種
測定者	排	水	溝		項目	1 月	2 月	3 月	平 均	及びD L
(注2)				平	均 濃 度 (Bq/cm³)	*	*	×	*	Pu (α)
l .				放出	実 測 分 (MBq)	0	0	0	計 0	3.7×10^{-5}
原子力機構サイク	第		2	量	不検出分 (MBq)	微	微	微	計微	Bq/cm³
サイク	分 		Δ	平	均 濃 度 (Bq/cm³)	*	*	*	*	U
ル 工 研				放出	実 測 分 (MBq)	0	0	0	計 0	1.0×10^{-4}
191				量	不検出分 (MBq)	微	微	微	計微	Bq/cm³
				平	均 濃 度 (Bq/cm³)	6.7×10^{-1}	7.1×10^{-2}	3.0×10^{-1}	3.1×10^{-1}	³ H
				放出	実 測 分 (MBq)	2.9×10 ⁴	4.1×10^{3}	1.6×10 ⁴	計 4.9×10 ⁴	6.3×10^{-2}
(注3)				量	不検出分 (MBq)	0	0	0	計 0	Bq/cm ³
原				平	均 濃 度 (Bq/cm³)	*	*	*	*	⁶⁰ Co
子	北	地	X	放出	実 測 分 (MBq)	0	0	0	計 0	2.8×10^{-3}
				世 量 —	不検出分 (MBq)	3.9	1.6	2.8	計 8.3	Bq/cm ³
力				平	均 濃 度 (Bq/cm³)	*	*	*	*	¹³⁷ Cs
機				放出	実 測 分 (MBq)	0	0	0	計 0	2.4×10^{-3}
構				量	不検出分 (MBq)	3.5	1.7	2.3	計 7.5	Bq/cm³
7冉				平	均 濃 度 (Bq/cm³)	*	*	*	*	⁶⁰ Co
大				放出	実 測 分 (MBq)	0	0	0	計 0	1.8×10^{-3}
洗洗	南	地	区	量	不検出分 (MBq)	微	4.4×10^{-2}	微	計 4.4×10 ⁻²	Bq/cm³
	113			平	均 濃 度 (Bq/cm³)	*	*	*	*	¹³⁷ Cs
				放出	実 測 分 (MBq)	0	0	0	計 0	1.8×10^{-3}
				量	不検出分 (MBq)	微	4.4×10^{-2}	微	計 4.4×10 ⁻²	Bq/cm³
(注4) 原那				平	均 濃 度 (Bq/cm³)			*	*	³ H
原子力機構到	貯	水	槽	放出	実 測 分 (MBq)	0	0	0	計 0	4.7×10^{-2}
構珂				量	不検出分 (MBq)	0	0	3.8×10^{-1}	計 3.8×10 ⁻¹	Bq/cm³

測	H- 1. H			放 出	状 況		 分析核種
測定者	排水溝	項目	1 月	2 月	3 月	平均	及びD L
		平 均 濃 度 (Bq/cm³)	×	*	*	*	⁶⁰ Co
		放 実 測 (MBq)	0	0	0	計 0	8.2×10^{-3}
		出 不 検 出 分 (MBq)	1.8	2.0	2.2	計 6.0	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×	×	*	*	¹³⁷ Cs
	古上双声式	放 (MBq)	0	0	0	計 0	7.5×10^{-3}
		量不検出分 (MBq)	1.5	2.0	2.0	計 5.5	Bq/cm³
(注5)	東海発電所	平 均 濃 度 (Bq/cm³)	×	×	*	*	¹⁵² Eu
原		放 実 測 分 (MBq)	0	0	0	計 0	4.3×10^{-2}
		量不検出分 (MBq)	8.8	1.1×10	1.1×10	計 3.1×10	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×	*	*	*	¹⁵⁴ Eu
		放 実 測 分 (MBq)	0	0	0	計 0	2.2×10^{-2}
		量不検出分 (MBq)	4.6	5.8	5.9	計 1.6×10	Bq/cm³
		平 均 濃 度 (Bq/cm³)	4.8×10^{-3}	1.2×10 ⁻²	2.8×10^{-2}	1.5×10 ⁻²	³ H
		放 実 測 分 (MBq)	1.8×10 ⁴	1.2×10 ⁵	1.5×10 ⁵	計 2.9×10 ⁵	5.5×10^{-2}
		量 不 検 出 分 (MBq)	0	0	0	計 0	Bq/cm³
		平 均 濃 度 (Bq/cm³)	*	*	*	*	$^{54}\mathrm{Mn}$
電		放 第 (MBq)	0	0	0	計 0	7.1×10^{-3}
	東海第二	量 不 検 出 分 (MBq)	3.9	1.2×10	1.3×10	計 2.9×10	Bq/cm³
	発 電 所	平 均 濃 度 (Bq/cm³)	*	*	*	*	⁵⁸ Co
		放 第 (MBq)	0	0	0	計 0	7.1×10^{-3}
		量不検出分 (MBq)	3.9	1.2×10	1.3×10	計 2.9×10	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×	*	*	*	⁶⁰ Co
		放 第 (MBq)	0	0	0	計 0	8.3×10^{-3}
		T 検出分 (MBq)	4.5	1.4×10	1.5×10	計 3.4×10	Bq/cm³

測				 放 出	 状 况		分析核種
測定者	排水溝	項目	1 月	2 月	3 月	平均	及びDL
		平 均 濃 度 (Bq/cm³)				*	⁸⁹ Sr
(注5) 原		放 実 測 分 (MBq)	(;	3ヶ月合成試料	ļ)	計 0	5.9×10^{-4}
,,,,	東海第二	量不検出分 (MBq)				計 1.9	Bq/cm³
	発 電 所	平 均 濃 度 (Bq/cm³)				*	⁹⁰ Sr
電		放 実 測 分 (MBq)	(5	3ヶ月合成試料	ļ)	計 0	8.0×10^{-5}
		T 検出分 (MBq)				計 3.0×10 ⁻¹	Bq/cm³
		平 均 濃 度 (Bq/cm³)	*	*	*	*	U
J		放 第 (MBq)	0	0	0	計 0	7.4×10^{-4}
C	廃水ポンド	量不検出分 (MBq)	2.0×10^{-1}	3.1×10^{-1}	2.0×10^{-1}	計 7.1×10 ⁻¹	Bq/cm³
	元力では、マート	平 均 濃 度 (Bq/cm³)	*	*	*	*	Th, Pa
0		放 第 (MBq)	0	0	0	計 0	1.1×10^{-3}
		T 検出分 (MBq)	3.0×10^{-1}	4.5×10^{-1}	3.0×10^{-1}	計 1.1	Bq/cm³
		平 均 濃 度 (Bq/cm³)	*	*	*	*	U
		放 実 測 分 (MBq)	0	0	0	計 0	4.0×10^{-4}
(注6) 三	排水ポンド	量不検出分 (MBq)	1.1	1.6	1.2	計 3.9	Bq/cm³
	371 734 74 1	平 均 濃 度 (Bq/cm³)	×	×	*	*	Th, Pa
菱		放 実 測 分 (MBq)	0	0	0	計 0	1.0×10^{-3}
交		量 不 検 出 分 (MBq)	2.7	3.9	3.1	計 9.7	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×			*	U
原		放 第 测 分 (MBq)	0	0	0	計 0	4.0×10^{-4}
	排 水 貯 槽	量不検出分 (MBq)	微	0	0	計微	Bq/cm³
燃	排水貯槽一。	平 均 濃 度 (Bq/cm³)	×			*	Th, Pa
		放 実 測 分 (MBq)	0	0	0	計 0	1.0×10^{-3}
		T 検出分 (MBq)	微	0	0	計微	Bq/cm³

測	Ht -1。 注	-75 II		 放 出	 状 況		 分析核種
測定者	排水溝	項目	1 月	2 月	3 月	平 均	及びDL
		平 均 濃 度 (Bq/cm³)	1.8×10 ⁻⁴	1.2×10^{-3}	4.2×10^{-4}	6.0×10^{-4}	¹³⁷ Cs
		放 実 測 分 (MBq)	7.1×10^{-3}	4.9×10^{-2}	1.7×10^{-2}	計 7.3×10 ⁻²	1.5×10^{-4}
		出 不 検 出 分 (MBq)	0	0	0	計 0	Bq/cm³
(注7) N		平 均 濃 度 (Bq/cm³)	3.5×10^{-4}	2.9×10^{-4}	2.1×10^{-4}	2.8×10^{-4}	⁶⁰ Co
IN		放 (MBq)	1.4×10^{-2}	1.2×10^{-2}	8.3×10^{-3}	計 3.4×10 ⁻²	1.5×10^{-4}
	排水貯槽	量不検出分 (MBq)	0	0	0	計 0	Bq/cm³
D	19F /JC XJ /TE	平 均 濃 度 (Bq/cm³)	×	*	*	*	⁵⁸ Co
		放 実 測 分 (MBq)	0	0	0	計 0	1.4×10^{-4}
С		量不検出分 (MBq)	微	微	微	計微	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×	*	*	*	U
		放 実 測 分 (MBq)	0	0	0	計 0	1.2×10^{-3}
		量不検出分 (MBq)	4.8×10^{-2}	4.8×10^{-2}	4.8×10^{-2}	計 1.4×10 ⁻¹	Bq/cm³
		平 均 濃 度 (Bq/cm³)	*	*	*	*	U
原		放 実 測 分 (MBq)	0	0	0	計 0	3.4×10^{-4}
燃燃	排水ポンド	T 検出分量 (MBq)	3.1×10^{-1}	3.2×10^{-1}	3.5×10^{-1}	計 9.8×10 ⁻¹	Bq/cm ³
2565	1917/16/4/ 0 1	平 均 濃 度 (Bq/cm³)	*	*	*	*	Th, Pa
エ		放 実 測 分 出 (MBq)	0	0	0	計 0	8.4×10^{-4}
		量 不 検 出 分 (MBq)	7.7×10^{-1}	7.8×10^{-1}	8.6×10^{-1}	計 2.4	Bq/cm ³
		平 均 濃 度 (Bq/cm³)		*		*	U
(注8) 三 菱		放 実 測 分 出 (MBq)	0	0	0	計 0	1.2×10^{-3}
マ	排水貯槽	量不検出分 (MBq)	0	6.0×10^{-2}	0	計 6.0×10 ⁻²	Bq/cm ³
テリア	排水貯槽一式	平 均 濃 度 (Bq/cm³)		×		*	Th, Pa
ルル		放 実 測 分 出 (MBq)	0	0	0	計 0	4.4×10^{-3}
		工量不検出分(MBq)	0	2.2×10^{-1}	0	計 2.2×10 ⁻¹	Bq/cm³

測定者	排	水	溝		項	E E		放出	状 況		分析核種				
者	171	八	冊		内		1 月	2 月	3 月	平 均	及びDL				
				平	均 (Bq/c	濃 度 cm³)	1.4	1.4	1.1	1.3	³ H				
lete:	-10 ±6. 1±8.	t teke Lette	整槽	放出	実 (N	測 分 IBq)	2.8×10^{3}	3.3×10^{3}	2.7×10^{3}	計 8.8×10 ³	2.0×10^{-2}				
第一				敕	⇒ 1==	击6· ↓击	嫩 抽	救	粬	榑	量	不 検 (N	出分 MBq)	0	0
化学	調	至	僧	平	均 (Bq/c	濃 度 cm³)	1.2	1.2	1.3	1.2	14C				
				放出	実 (N	測 分 IBq)	2.5×10^{3}	2.7×10^{3}	3.2×10^{3}	計 8.4×10 ³	2.0×10^{-2}				
				量	不検	出分 MBq)	0	0	0	計 0	Bq/cm³				
				平	均 (Bq/c	濃 度 cm³)					U				
(注9)				放出		測 分 IBq)	0	0	0	計 0	7.4×10^{-4}				
住友	层从	出: -	水捕	量	不 検 (N	出分 MBq)	0	0	0	計 0	Bq/cm³				
鉱	屋外排水槽	平	均 (Bq/c	濃 度 cm³)					Th, Pa						
山		,	放出		測 分 IBq)	0	0	0	計 0	1.1×10^{-3}					
				量	不検	t 出分 IBq)	0	0	0	計 0	Bq/cm³				

(注1) 原子力機構原科研

第1:希釈倍率 2.0×10³倍。 第2:希釈倍率 9.9×10倍。 第3:希釈倍率 1.1×10倍。

(注2) 原子力機構サイクル工研

再処理施設: Pu (α), Uは月合成試料。

(注3) 原子力機構大洗

北地区: 希釈倍率 4.6×10² 倍。

(注4) 原子力機構那珂

貯水槽:希釈倍率 1.3×10³ 倍。1月,2月は排水の放出なし。

(注5)原電

東海発電所:希釈倍率 2.9×10倍。 東海第二発電所:希釈倍率 4.7×10³ 倍。 ³Hは月合成試料。 ⁸⁹Sr, ⁹⁰Srは3ヶ月合成試料。

(注6) 三菱原燃

排水貯槽:2月,3月は排水の放出なし。

(注7) NDC: 今期の排水放水は毎月各1回。

(注8) 三菱マテリアル:1月,2月は排水の放出なし。

(注9) 住友鉱山: 今期は排水の放出なし。

3-2-1′排水中の放射性核種分析結果

測	せい。進	75 D	-		状 汚		分析核種	
測定者	排水溝	項目	1 月	2 月	3 月	平 均	及びDL	
	原子力機構 原子力機構	濃 (Bq/cm³) 度	*	*	*	*	⁶⁰ Co 1.1×10 ⁻⁴	
	(第1)	採 水 月 日	1.7	2.4	3.3		Bq/cm ³	
		濃 度 (Bq/cm³)	*	*	*			
		採水月日	1.7	2.4	3.3		³ H	
		濃 度 (Bq/cm³)	*	*	*	*	3.7×10^{-3} Bq/cm^3	
		採 水 月 日	1.17	2.18	3.17		Eq/ cm	
		濃 (Bq/cm³) 度	*	*	*			
	ッ (第2)	"	採 水 月 日	1.7	2.4	3.3		⁶⁰ Co
		濃 度 (Bq/cm³)	*	*	*	*	1.1×10^{-4} Bq/cm^3	
		採 水 月 日	1.17	2.18	3.17		Eq/ cm	
		濃 (Bq/cm³) 度	×	*	*	- ×		
県		採 水 月 日	1.7	2.4	3.3		¹³⁷ Cs	
		濃 (Bq/cm³) 度	*	*	*		$\begin{array}{c c} 1.1 \times 10^{-4} \\ \text{Bq/cm}^3 \end{array}$	
		採 水 月 日	1.17	2.18	3.17			
	"	濃 (Bq/cm³) 度	×	*	*	×	⁶⁰ Co 1.1×10 ⁻⁴	
	(第3)	採 水 月 日	1.23	2.6	3.5		Bq/cm ³	
		濃 度 (Bq/cm³)	×	*	*		$U = 3.7 \times 10^{-4}$	
	原子力機構	採 水 月 日	1.7	2.4	3.3	*	3.7×10^{-4} Bq/cm ³	
	サイクル工研 (第2)	濃 (Bq/cm³) 度	*	*	*	.,	Pu (α)	
		採 水 月 日	1.7	2.4	3.3	*	3.7×10^{-5} Bq/cm ³	
	原子力機構	濃 (Bq/cm³) 度	×	*	*	×	3 H 3.7×10^{-3}	
	大 洗	採 水 月 日	1.17	2.18	3.17	*	3.7×10^{-3} Bq/cm ³	

測	141- 1. Y#s	- - -	,	放出	状 涉	 Z	分析核種
測定者	排水溝	項目	1 月	2 月	3 月	平 均	及びDL
	原子力機構	濃 (Bq/cm³) 度	~	*	*	*	60Co 1.1×10 ⁻⁴
	大 洗 (北地区)	採 水 月 日 濃 (Bq/cm³)	1.17 ×	2.18 *	3.17 *		Bq/cm ³
		採 水 月 日	1.17	2.18	3.17	*	1.1×10^{-4} Bq/cm ³
		濃 度 (Bq/cm³)	×	×	×		
	原 電 (東海)	採 水 月 日	1.7	2.4	3.3	*	60Co 3.0×10 ⁻⁴
		濃 度 (Bq/cm³)	×	*	*		3.0 × 10 4 Bq/cm ³
		採 水 月 日	1.17	2.18	3.17		_
	(東海)	濃 (Bq/cm³) 度	*	*	*	*	127.0
		採水月日	1.7	2.4	3.3		^{137}Cs 3.7×10^{-4} Bq/cm^3
		濃 度 (Bq/cm³)	*	*	*		
 県		採 水 月 日	1.17	2.18	3.17		
		濃 度 (Bq/cm³)	×	*	*		³ H
		採 水 月 日	1.7	2.4	3.3	*	3.7×10^{-3}
		濃 (Bq/cm³) 度	*	*	*		3.7×10^{-3} Bq/cm^3
		採水月日	1.17	2.18	3.17		
		濃 (Bq/cm³) 度	×	*	*		542.5
	"	採 水 月 日	1.7	2.4	3.3	*	54 Mn 5.0×10^{-4}
	(東海第二)	濃 度 (Bq/cm³)	*	*	*		Bq/cm ³
		採 水 月 日	1.17	2.18	3.17		
		濃 度 (Bq/cm³)	*	*	*		60.0 -
		採 水 月 日	1.7	2.4	3.3	*	⁶⁰ Co 3.0×10 ⁻⁴
		濃 (Bq/cm³) 度	×	*	*		$8q/cm^3$
		採水月日	1.17	2.18	3.17		

測	LJI. I	\44·						状 涉	 Z	分析核種
測定者	排水	溝	項	目	-	1 月	2 月	3 月	平 均	及びDL
			濃 (Bq/	cm³)	变	×	*	*		127.0
	原	電	採 水	月日	∃	1.7	2.4	3.3		¹³⁷ Cs
	(東海第二	二)	濃 (Bq/	cm³)	变	*	*	*	*	3.7×10^{-4} Bq/cm^3
			採水	月日	∃	1.17	2.18	3.17		Eq/ om
	J C (0	濃 (Bq/	cm ³)	度	*	*	*	*	U 27×10-4
	J	U	採水	月日	∃	1.24	2.21	3.13		3.7×10^{-4} Bq/cm ³
	一类质	.W4	濃 (Bq/	cm ³)	变	×	*	×	*	U 27×10-4
	三 菱 原		採水	月日	∃	1.16	2.25	3.18		3.7×10^{-4} Bq/cm ³
	Let Male	エ	濃 (Bq/	cm ³)	度	*	*	*	×	U
	原燃		採水	月日	Β	1.24	2.15	3.31		3.7×10^{-4} Bq/cm ³
県			濃 (Bg/	cm³)	度	1.5×10^{-4}	2.0×10^{-4}	4.3×10^{-4}	2.6×10^{-4}	⁶⁰ Co
					Η	1.29	2,21	3.19		1.1×10^{-4} Bq/cm^3
			濃 (Bq/	cm³)	度	*	*	×		⁵⁸ Co
	N D	С	採 水		∃	1.29	2.21	3.19	*	1.9×10^{-4} Bq/cm ³
			濃 (Ba/	cm ³)	度	*	1.5×10^{-3}	6.8×10^{-4}		¹³⁷ Cs
			採 水		∃	1.29	2.21	3.19	7.9×10^{-4}	1.9×10^{-4} Bq/cm ³
			濃 (Ba/	cm³)	变	2.1	1.5	1.5		3 H
			採水		∃	1.7	2.4	3.3	1.7	2.0×10^{-2} Bq/cm ³
	第一化	学			变	1.1	1.1	1.0		14C
					∃	1.7	2.4	3.3	1.1	2.0×10^{-2} Bq/cm^3

測	Lilla I. 144	-77:					*************************************	Į.	分析核種
測定者	排水溝	項	I		1 月	2 月	3 月	平均	及びDL
	原子力機構	濃	2)	度	*	*	*		⁶⁰ Co
	原 科 研	(Bq/	cm ³)			, ,	<u> </u>	*	1.5×10^{-4}
	(第1)	採水	月	日	1.24	2.20	3.6		Bq/cm³
		濃 (Bq/	(cm ³)	度	*	*	*		³ H
					1.04	0.00	0.2	\times	2.0×10^{-2}
		採水	月	日	1.24	2.20	3.6		Bq/cm³
		濃 (Bq/	(cm^3)	度	\times	\times	*		¹⁴ C
					1.04	0.00	0.2	\times	2.0×10^{-2}
水	"	採水	月	日	1.24	2.20	3.6		Bq/cm³
/,	(第2)	濃 (Bq/	(cm ³)	度	\times	*	*		⁶⁰ Co
戸					1.04	0.00	0.2	*	1.5×10^{-4}
		採水	月 	日	1.24	2,20	3.6		Bq/cm³
		濃 (Bq/	(cm^3)	度	*	*	*		¹³⁷ Cs
原					1.04	0.00	0.0	*	1.4×10^{-4}
		採水	月 	日	1.24	2.20	3.6		Bq/cm³
子	"	濃 (Bq/	(cm ³)	度	*	*	*		⁶⁰ Co
	(第3)				1.00	0.0	0.5	*	1.4×10^{-4}
力		採水	月	日	1.23	2.6	3.5		Bq/cm ³
		濃 (Bq/	(cm^3)	度	2.6×10^{-2}	*	*		³ H
事					1.00	0.10	0.10	2.2×10^{-2}	2.0×10^{-2}
				日	1.28	2.18	3.10		Bq/cm³
務	原子力機構	濃 (Bq/	cm ³)	度	\times	*	*		⁶⁰ Co
	大 洗 (北地区)	採 水		日	1.28	2.18	3.10	*	1.5×10^{-4}
所	(40年67)				1.20	2,10	3.10		Bq/cm³
		濃 (Bq/	cm ³)	度	\times	*	*		¹³⁷ Cs
				日	1.28	2.18	3.10	*	1.4×10^{-4}
					1.40	2,10	0.10		Bq/cm ³
		濃 (Bq/	cm ³)	度	2.8	1.7	5.2×10^{-1}		³ H
		採 水	月	日	1.24	2.14	3.7	1.7	2.0×10^{-2}
	第一化学				1,4T	2,17	0.1		Bq/cm³
		濃 (Bq/	cm ³)	度	3.5×10^{-1}	9.5×10^{-1}	1.3	07 × 10-1	14 C $^{20} \times 10^{-2}$
		採水	月	日	1.24	2.14	3.7	8.7×10^{-1}	2.0×10^{-2}
		1 /4	, ,	-	-,	_,			Bq/cm³

測	#1 .J#	- F		,	汝 出	状 沥	1	分析核種
測定者	排水溝	項目		1 月	2 月	3 月	平 均	及びDL
		濃 (Bq/cm³)	度	4.6×10^{-2}	*	*		³ H
		採水月	日	1.25	2.20	3.7	2.9×10^{-2}	2.0×10^{-2} Bq/cm ³
	原電	濃 (Bq/cm³)	度	*	*	*		⁶⁰ Co
水	(東海)						\times	1.7×10^{-4}
	(>10 1.3)	採水月	日	1.25	2.20	3.7		Bq/cm³
戸		濃 (Bq/cm³)	度	*	*	*		¹³⁷ Cs
125							\times	1.4×10^{-4}
原		採 水 月	日	1.25	2.20	3.7		Bq/cm³
子		濃 (Bq/cm³)	度	2.1×10^{-2}	*	*		³ H
 力		採水月	日	1.25	2.20	3.7	2.0×10^{-2}	2.0×10^{-2} Bq/cm ³
 事		濃 (Bq/cm³)	度	*	*	*		⁵⁴ Mn
'							*	2.0×10^{-4}
務	"	採 水 月	日	1.25	2.20	3.7		Bq/cm³
 所	(東海第二)	濃 (Bq/cm³)	度	*	*	*		⁶⁰ Co
1771				1.05	2.22	0.5	\times	1.7×10^{-4}
		採水月	日	1.25	2.20	3.7		Bq/cm³
		濃 (Bq/cm³)	度	*	*	*		¹³⁷ Cs
							*	1.5×10^{-4}
		採 水 月	日	1.25	2.20	3.7		Bq∕cm³

3-2-1″排水中の放射性核種分析結果

(その他検出された核種)

測定者	HI:	-lv	溝	項目		放 出	状 況		分析核種
走	排	水	件	項目	1 月	2 月	3 月	平 均	及びDL
				平 均 濃 度 (Bq/cm³)	(3ヶ月合成試料)			3.8×10^{-9}	⁹⁰ S r 5.7 × 10 ⁻⁵
				放出量(実測分) (MBq)) ケ月石双武体	計 1.0×10 ⁻³	7.3×10^{-5} Bq/cm ³	
(注1) 原	(注1) 原子力機構原科研	平 均 濃 度 (Bq/cm³)		9.1×10^{-7}			¹³⁷ Cs 2.3 × 10 ⁻³ ∼		
子力機		放出量(実測分) (MBq)		8.5×10^{-2}		計 8.5×10 ⁻²	3.0×10^{-3} Bq/cm ³		
構原科		平 均 濃 度 (Bq/cm³)	4.2×10^{-8}	7.9×10^{-8}			²³² Th		
研				放出量(実測分) (MBq)	3.8×10^{-3}	7.4×10^{-3}		計 1.1×10 ⁻²	2.5×10^{-4} Bq/cm ³
	第		2	平 均 濃 度 (Bq/cm³)	(3ヶ月合成試料)			1.5×10 ⁻⁸	$^{90}\mathrm{S}\mathrm{r}$ 6.1×10^{-5}
	分		Δ	放出量(実測分) (MBq)				計 1.4×10 ⁻²	8.0×10^{-5} Bq/cm ³
	-t- \/-	- 17 % 5	# =r'	平 均 濃 度 (Bq/cm³)	3.9×10^{-2}	3.6×10^{-2}	4.1×10^{-2}		³ H
(注2) 原			毛 肝	放出量(実測分) (MBq)	2.3×10 ²	2.7×10^{2}	3.1×10^{2}	計 8.1×10 ²	5.4×10^{-2} Bq/cm ³
電	東海第二発電所		- -	平 均 濃 度 (Bq/cm³)			4.1×10^{-8}		³⁶ Cl
				放出量(実測分) (MBq)			2.2×10^{-1}	計 2.2×10 ⁻¹	1.5×10^{-2} Bq/cm ³

(注1) 原子力機構原科研

第1:希釈倍率 2.0×10³倍

⁹⁰Sr, ¹³⁷Cs:環境シミュレーション試験棟からの廃液

²³²Th: 第4研究棟からの廃液

第2:希釈倍率 9.9×10倍

%Sr:廃棄物処理施設からの廃液

(注2)原電

東海発電所:希釈倍率 2.9×10倍 ³Hは月合成試料

東海第二発電所:希釈倍率 3.0×103倍

³⁶Cl は月合成試料

36Cl 雑固体減容処理設備の排ガス洗浄廃液より検出 (東海発電所の金属等廃棄物溶融による)

参考)排液中又は排水中の濃度限度

試験研究の用に供する原子炉等の設置、運転等に関する規則等の規定に基づき、線量限度等を定める告示 (昭和63年7月26日科学技術庁告示第20号, 平成17年11月30日文部科学省告示第163号により一部改正)

核種	濃度限度 ^(注1) (Bq/cm³)	核種	濃度限度 (Bq/cm³)	核 種	濃度限度 (Bq/cm³)
³ H	(注2) 6×10	87 Y	2	¹³⁷ Cs	9×10 ⁻²
¹⁴ C	2	⁸⁹ Sr	3×10 ⁻¹	¹⁴⁴ Ce	2×10 ⁻¹
²² Na	3×10 ⁻¹	⁹⁰ Sr	3×10^{-2}	¹⁵² Eu	6×10 ⁻¹
³⁵ S	1	⁹⁵ Zr	9×10 ⁻¹	¹⁵⁴ Eu	4×10 ⁻¹
³⁶ C1	9×10 ⁻¹	⁹⁵ Nb	1	¹⁹² Ir	6×10 ⁻¹
⁵¹ Cr	2×10	$^{99\mathrm{m}}\mathrm{Tc}$	4×10	²³² Th	4×10^{-3}
⁵⁴ Mn	1	¹⁰⁶ Ru	1×10 ⁻¹	²³⁴ Th	2×10 ⁻¹
⁵⁷ Co	4×10	$^{110\mathrm{m}}\mathrm{Ag}$	3×10 ⁻¹	²³⁷ Np	9×10 ⁻³
⁵⁸ Co	1	129 I	9×10 ⁻³	²³⁹ Pu	4×10^{-3}
⁵⁹ Fe	4×10^{-1}	¹³¹ I	4×10^{-2}	U	2×10 ⁻²
⁶⁰ Co	2×10 ⁻¹	¹³⁴ Cs	6×10^{-2}	²⁴¹ Am	5×10^{-3}

⁽注1) 濃度限度は3ヶ月平均濃度であり、 3 H以外の核種はその核種において最も低い値である。(注2) 水としての濃度限度。有機物(メタンを除く)としての濃度限度は $2 \times 10 \mathrm{Bq/cm^3}$ 。

3-2-2 排水中の全β放射能測定結果

測	定	者	評 価 対 象	判 断 基 準
长	⇒几	者	月最高濃度	2×10^{-2} Bq/cm ³
旭	施設		月平均濃度	4×10^{-3} Bq/cm ³
	県		测心后連由	2 × 10=2 D a / om 3
水戸原	原子力事	事務所	測定毎濃度	2×10^{-2} Bq/cm ³

測完	排	水		項目		放 出	状 況	•	主 な 放出核種
定者	17/1	八	件	- 現 日	1 月	2 月	3 月	平 均	及びDL
				最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co
原	第		1	平均濃度	*	*	×	×	1.9×10^{-5}
子力				(Bq/cm³)		^	^	^	Bq/cm ³
機				最高濃度 (Bq/cm³)	*	×	×		⁶⁰ Co, ¹³⁷ Cs
構	第		2	平均濃度	*	*	*	*	1.8×10^{-5} Bq/cm ³
原				(Bq/cm³)					_
科研	k-k-		0	最高濃度 (Bq/cm³)	*	*	*		60Co
1471	第		3	平均濃度	*	×	*	*	1.8×10^{-5} Bq/cm ³
()) ()				(Bq/cm³)					DQ/ CIII°
(注1) 原サ				最高濃度 (Bq/cm³)	1.3×10^{-6}	2.7×10^{-6}	×		
子 ^イ ,ク	fr.k.		1	平 均 濃 度 (Bq/cm³)	1.3×10^{-6}	2.3×10^{-6}	×	1.7×10^{-6}	U
カル機工	第		1	放 実 測 分 (MBq)	1.2×10^{-2}	3.2×10^{-2}	0	計 4.4×10 ⁻²	1.8×10^{-4} Bq/cm ³
構研				出 不 検 出 分 (MBq)	8.1×10 ⁻³	0	2.0×10^{-2}	計 2.8×10 ⁻²	Eq/ om
房子力機 構洗				最高濃度 (Bq/cm³)	*	*	*		⁶⁰ Co, ¹³⁷ Cs
力機	北	地	X	平均濃度					2.0×10^{-4}
				(Bq/cm ³)	*	×	*	×	Bq/cm³
(注2) 原那 子 力		,	t.it.	最高濃度 (Bq/cm³)			*		全β
	貯	水	槽	平均濃度		<u></u>	*	*	5.2×10^{-3}
				(Bq/cm³)					Bq/cm ³
第一		#4	J. .II.	最高濃度 (Bq/cm³)	*	*	*		全β
化学	調	整	槽	平 均 濃 度 (Bq/cm³)	×	×	×	*	2.0×10^{-4} Bq/cm^3

⁽注1) 原子力機構サイクル工研: 希釈倍率 1.2×10² 倍 第1排水溝は連続採取による合成試料

⁽注2) 原子力機構那珂: 希釈倍率 1.3×10^3 倍 1 月, 2 月は排水の放出なし。

3-2-2′ 排水中の全β放射能測定結果

測定者	排水溝	項	目		放 出	状	況
者	17F /J. 144			1 月	2 月	3 月	平均
	原子力機構原科研	濃 (Bq/c	度 :m³)	*	*	*	*
	(第 1)	採水	月 日	1.7	2.4	3.3	~
		濃 (Bq/c	度 cm³)	*	*	*	
	"	採水	月 日	1.7	2.4	3.3	
	(第 2)	濃 (Bq/c	度 cm³)	*	*	*	*
		採水	月 日	1.17	2.18	3.17	
	"	濃 (Bq/c	度 cm³)	*	*	*	~
	(第 3)	採水	月 日	1.23	2.6	3.5	*
	原 子 力 機 構 サイクル 工 研	濃 (Bq/c	度 em³)	6.8×10^{-4}	6.7×10^{-4}	6.3×10^{-4}	6.6×10^{-4}
	(第 1)	採水	月 日	1.7	2.4	3.3	0.0 × 10
	"	濃 (Bq/c	度 em³)	1.8×10^{-3}	1.8×10^{-3}	2.0×10^{-3}	1.9×10^{-3}
	(第 2)	採水	月 日	1.7	2.4	3.3	1.9×10
県	原子力機構大洗	濃 (Bq/c	度 m³)	*	7.8×10^{-4}	×	3.9×10^{-4}
尔	(北地区)	採水	月 日	1.17	2.18	3.17	0.5 / 10
	三 菱 原 燃	濃 (Bq/c	度 m³)	5.2×10^{-4}	5.5×10^{-4}	8.3×10^{-4}	6.3×10^{-4}
		採水	月 日	1.16	2.25	3.18	0.5 ^ 10
	原燃工	濃 (Bq/c	度 m³)	4.1×10^{-4}	4.8×10^{-4}	4.7×10^{-4}	4.5×10^{-4}
		採水	月 日	1.24	2.15	3.31	4.5 ^ 10
	J C O	濃 (Bq/c	度 m³)	5.5×10^{-4}	2.9×10^{-4}	2.7×10^{-4}	3.7×10^{-4}
			月 日	1.24	2.21	3.13	0.7 ^ 10 -
	N D	濃 (Bq/c	度 m³)	8.8×10^{-4}	1.7×10^{-3}	9.2×10^{-4}	1.2×10^{-3}
	N D C	採水	月 日	1.29	2.21	3.19	1,2 ^ 10
	第一化学	濃 (Bq/c	度 m³)	1.1×10^{-3}	4.2×10^{-4}	4.3×10^{-4}	6.5×10^{-3}
	N IL F		月 日	1.7	2.4	3.3	0.0 \(\sigma\)
	(注) 住 友 鉱 山	濃 (Bq/c	度 m³)				
	L	採水	月 日				

(注) 住友鉱山:1月~3月は排水の放出なし。

測	# 一	75 0	放	出 状	況
測定者	排水溝	項目	1 月 2	月 3 月	平均
	原子力機構原科研	濃 度 (Bq/cm³)	* *	*	*
	(第 1)	採 水 月 日	1.24 2.2	3.6	
	"	濃 (Bq/cm³) 度	* *	*	· ×
水	(第 2)	採 水 月 日	1.24 2.2	3.6	
戸	"	濃 度 (Bq/cm³)	* *	*	· ×
	(第 3)	採水月日	1.23 2.0	3.5	^
原	原子力機構	濃 度 (Bq/cm³)	4.0×10^{-4} $8.8 \times$	10^{-4} 7.0×10^{-4}	6.6 × 10 ⁻⁴
	(第 1)	採水月日	1.28 2.2	3.7	0.0 × 10
子	原子力機構大洗	濃 度 (Bq/cm³)	* *	*	· *
力	(北地区)	採 水 月 日	1.28 2.1	8 3.10	
	第 一 化 学	濃 (Bq/cm³) 度	* *	2.7×10^{-4}	2.2×10^{-4}
事	MT IL	採水月日	1.24 2.1	4 3.7	2.2 × 10
74	三 菱 原 燃	濃 (Bq/cm³) 度	3.1 × 10 ⁻⁴ ×	2.7×10^{-4}	2.6×10^{-4}
務		採水月日	1.22 2.2	3.14	2.0 × 10
所	J C O	濃 度 (Bq/cm³)	* *	*	· ×
		採 水 月 日	1.24 2.1	4 3.13	
	原燃工	濃 度 (Bq/cm³)	× 3.0×	10^{-4} 3.7×10^{-4}	2.9×10^{-4}
	/// // I	採 水 月 日	1.29 2.2	3.11	2.0 · · 10

3-2-3 再処理施設排水中の放射性核種分析結果

測定者	評価対象	判 断 基 準
施設者	3ヶ月放出量	保安規定に定める3ヶ月当たりの最大放出量
県	測定毎濃度	保安規定に定める最大放出濃度

測定者	排 水 溝	項目		放 出	状 洗	1	分析核種
者	171 / 件		1 月	2 月	3 月	平 均	及びD L
		平 均 濃 度 (Bq/cm³)	*		*	*	³ H
		放 実 測 分 (MBq)	0	0	0	計 0	3.7
		出 不 検 出 分 (MBq)	8.9×10	0	3.7×10	計 1.3×10 ²	Bq/cm³
		平 均 濃 度 (Bq/cm³)	*		*	*	⁸⁹ Sr
原	再	放 (MBq)	0	0	0	計 0	2.2×10^{-3}
子		工量不検出分(MBq)	5.3×10^{-2}	0	微	計 5.3×10 ⁻²	Bq/cm³
力		平 均 濃 度 (Bq/cm³)	×		×	×	⁹⁰ Sr
	処	放 実 測 分 (MBq)	0	0	0	計 0	1.1×10^{-3}
機		工 量 不検出分 (MBq)	微	0	微	計微	Bq/cm³
構		平 均 濃 度 (Bq/cm³)	*		×	×	⁹⁵ Zr
サ	理	放 (MBq)	0	0	0	計 0	2.5×10^{-3}
イ		出 不 検 出 分 (MBq)	6.0×10^{-2}	0	微	計 6.0×10 ⁻²	Bq/cm³
ク		平 均 濃 度 (Bq/cm³)	*		×	×	⁹⁵ Nb
	施	放 実 測 分 (MBq)	0	0	0	計 0	1.8×10^{-3}
ル		出 不 検 出 分 (MBq)	4.3×10^{-2}	0	微	計 4.3×10 ⁻²	Bq/cm³
エ		平 均 濃 度 (Bq/cm³)	*		×	×	¹⁰³ Ru
研	設	放 実 測 分 (MBq)	0	0	0	計 0	1.1×10^{-3}
		出 不 検 出 分 (MBq)	微	0	微	計微	Bq/cm³
		平 均 濃 度 (Bq/cm³)	×		×	×	¹⁰⁶ Ru - ¹⁰⁶ Rh
		放 実 測 分 (MBq)	0	0	0	計 0	3.2×10^{-2}
		出 不 検 出 分 (MBq)	7.7×10^{-1}	0	3.2×10^{-1}	計 1.1	Bq/cm³

測定者	排水溝	項目		放 出	状 況		分析核種
者	1717 /八 (冉	人	1 月	2 月	3 月	平 均	及びDL
		平 均 濃 度 (Bq/cm³)	*		*	*	¹²⁹ I
		放 実 測 分 (MBq)	0	0	0	計 0	1.4×10^{-3}
		出 不 検 出 分 (MBq)	微	0	微	計微	Bq/cm ³
		平 均 濃 度 (Bq/cm³)	*		×	×	131 I
原	再	放 実 測 分 (MBq)	0	0	0	計 0	1.8×10^{-3}
子		出 不 検 出 分 (MBq)	4.3×10^{-2}	0	微	計 4.3×10 ⁻²	Bq/cm ³
 カ		平 均 濃 度 (Bq/cm³)	*		*	*	¹³⁴ Cs
	処	放 実 測 分 (MBq)	0	0	0	計 0	1.1×10^{-3}
機		出 不 検 出 分 (MBq)	微	0	微	計微	Bq/cm ³
構		平 均 濃 度 (Bq/cm³)	×		×	×	¹³⁷ Cs
サ	理	放 実 測 分 (MBq)	0	0	0	計 0	1.8×10^{-3}
イ		出 不 検 出 分 (MBq)	4.3×10^{-2}	0	微	計 4.3×10 ⁻²	Bq/cm ³
ク		平 均 濃 度 (Bq/cm³)	*		×	×	¹⁴¹ Ce
	施	放 (MBq)	0	0	0	計 0	2.2×10^{-3}
ル		出 不 検 出 分 (MBq)	5.3×10^{-2}	0	微	計 5.3×10 ⁻²	Bq/cm ³
エ		平 均 濃 度 (Bq/cm³)	*		×	×	¹⁴⁴ Ce – ¹⁴⁴ Pr
研	記	放 実 測 分 (MBq)	0	0	0	計 0	2.2×10^{-2}
		出 不 検 出 分 (MBq)	5.3×10^{-1}	0	2.2×10^{-1}	計 7.5×10 ⁻¹	Bq/cm ³
		平 均 濃 度 (Bq/cm³)	*		×	×	Pu (α)
		放 実 測 分 (MBq)	0	0	0	計 0	3.7×10^{-5}
		出 不 検 出 分 (MBq)	微	0	微	計微	Bq/cm ³

(注) $^{89}{\rm Sr},~^{90}{\rm Sr},~^{129}$ I 及びPu (α) は月合成試料 2 月は排水の放出なし

測	Life I. Nite	項目	放 出 状 況			分析核種	
測定者	排水溝		1 月	2 月	3 月	平均	及びD L
	原子力機構サイクル工研(再処理施設)	濃 (Bq/cm³) 度	*		*	*	³ H
		採 水 月 日	1.16		3.3		
		濃 度 (Bq/cm³)	*				3.7×10^{-3} Bq/cm^3
		採 水 月 日	1.25				
		濃 (Bq/cm³) 度	×		*	 *	⁹⁵ Zr
		採 水 月 日	1.16		3.3		
		濃 度 (Bq/cm³)	×				3.7×10^{-3} Bq/cm ³
		採 水 月 日	1.25				•
県		濃 (Bq/cm³) 度	×		*	*	⁹⁵ Nb
		採 水 月 日	1.16		3.3		
		濃 度 (Bq/cm³)	×				3.7×10^{-3} Bq/cm^3
		採 水 月 日	1.25				•
		濃 度 (Bq/cm³)	×		*	 *	¹⁰⁶ Ru
		採 水 月 日	1.16		3.3		
		濃 (Bq/cm³) 度	*				7.4×10^{-3} Bq/cm ³
		採 水 月 日	1.25				_
		濃 (Bq/cm³) 度	*		*		101 -
		採 水 月 日	1.16		3.3	- × 	131 I
		濃 度 (Bq/cm³)	*				1.0×10^{-2} Bq/cm ³
		採 水 月 日	1.25				-
		濃 度 (Bq/cm³)	×		*	*	10.1-
		採 水 月 日	1.16		3.3		¹³⁴ Cs
		濃 度 (Bq/cm³)	×				1.1×10^{-3} Bq/cm^3
		採 水 月 日	1.25				

測定者	排水溝	項目		放 出	状 況		分析核種
者	1分 小 伸	- 切 日	1 月	2 月	3 月	平 均	及びDL
県	原子力機構サイクル工研(再処理施設)	濃 (Bq/cm³) 度	*		*	 *	¹³⁷ Cs
		採 水 月 日	1.16		3.3		
		濃 (Bq/cm³) 度	×				$\begin{array}{c c} 2.2 \times 10^{-4} \\ \text{Bq/cm}^3 \end{array}$
		採水月日	1.25				Dq/ om
		濃 (Bq/cm³) 度	×		*	*	^{144}Ce 1.1×10^{-2} Bq/cm^3
		採 水 月 日	1.16		3.3		
		濃 度 (Bq/cm³)	*				
		採 水 月 日	1.25				1
		濃 (Bq/cm³) 度	*		*	 - *	Pu (α) 3.7×10 ⁻⁵
		採水月日	1.16		3.3		
		濃 (Bq/cm³) 度	*				$8q/cm^3$
		採水月日	1.25				_

⁽注) 2月及び3月の2回目は排水の放出なし。

参 考 法令値

核燃料物質の加工の事業に関する規則等の規定に基づき、線量限度等を定める告示(平成12年12月26日科学技術庁告示第13号、平成17年11月22日経済産業省告示第293号により一部改正)第9条第2~4項(再処理施設に適用)

海洋放出に起因する線量限度は3ヶ月間につき250マイクロシーベルトとする に基づき、原子力機構サイクル工研再処理施設保安規定では、次表のとおり放出の基準を定めている。

なお、本基準の「1年間の最大放出量」で放射性液体廃棄物を海洋へ放出した場合の実効線量は、年間、約5.4マイクロシーベルトに相当する。また、「3ヶ月当たりの最大放出量」は、「1年間の最大放出量」の4分の1に当たる。「最大放出濃度」及び「1日当たりの最大放出量」は、これらを守るための日常の運転管理に係る基準である。

区 分	最大放出濃度 (Bq/cm³)	1日当たりの 最大放出量(GBq)	3ヶ月当たりの 最大放出量(GBq)	1 年 間 の 最大放出量(GBq)
全α放射能	3.0×10^{-2}	1.1×10^{-2}	1.0	4.1
全β放射能 (³Hを除く)	1.2×10	3.7	2.4×10 ²	9.6 × 10 ²
⁸⁹ Sr	(注1) 2.3×10 ⁻¹	(注2) 7.0×10 ⁻²	4.1	1.6×10
⁹⁰ Sr	(注1) 4.8×10 ⁻¹	(注2) 1.4×10 ⁻¹	8.1	3.2×10
⁹⁵ Zr - ⁹⁵ Nb	5.9×10^{-1}	1.7×10^{-1}	1.0×10	4.1×10
¹⁰³ Ru	9.3×10 ⁻¹	2.7×10^{-1}	1.6×10	6.4×10
¹⁰⁶ Ru - ¹⁰⁶ Rh	7.4	2.1	1.3×10 ²	5.1 × 10 ²
¹³⁴ Cs	8.5×10 ⁻¹	2.5×10^{-1}	1.5×10	6.0×10
¹³⁷ Cs	7.8×10 ⁻¹	2.3×10^{-1}	1.4×10	5.5×10
¹⁴¹ Ce	8.1 × 10 ⁻²	2.4×10^{-2}	1.5	5.9
¹⁴⁴ Ce - ¹⁴⁴ Pr	1.7	5.2×10^{-1}	3.0×10	1.2×10 ²
³ H	2.5×10 ⁴	7.4×10 ³	4.7×10 ⁵	1.9×10 ⁶
129 I	(注1) 3.7×10 ⁻¹	(注2) 1.1×10 ⁻¹	6.7	2.7×10
131 I	1.6	5.2×10^{-1}	3.0×10	1.2×10 ²
Pu (α)	(注1) 3.0×10 ⁻²	(注2) 1.1×10 ⁻²	5.9×10^{-1}	2.3

⁽注1) 1ヶ月平均1日最大放出濃度

⁽注2) 1ヶ月平均1日最大放出量

3-2-4 再処理施設排水中の全β放射能測定結果

測定者	評価対象	再処理排水に係わる低減化目標値
施設者	月最高濃度	10 Bq∕cm³
	月平均濃度	4 Bq/cm³
県	測定毎濃度	10 Bq∕cm³

測定者	排水溝	項目		放 出	状 況		主 放出核種
者	17/1 /八 (冉	切 口	1 月	2 月	3 月	平 均	及びDL
原子力		最高濃度 (Bq∕cm³)	*		*		
	再処理施設	平 均 濃 度 (Bq/cm³)	*		*	×	2.2×10^{-2} Bq/cm^3
リイクル	丹处垤施設	放 実 測 分 (MBq)	0	0	0	計 0	Bq/cm³
工研		出 不検出分 (MBq)	5.3×10^{-1}	0		計 7.5×10 ⁻¹	

(注) 2月は排水の放出なし。

測完	排水溝	項目		放 出	状 況	
測定者	19h / / / / / / / / / / / / / / / / / / /	- 現 日	1 月	2 月	3 月	平 均
		農 度 (Bq∕cm³)	*		*	
県	原子力機構	採水月日	1.16		3.3	*
坏	(再処理施設)	農 度 (Bq∕cm³)	*			
		採水月日	1.25			

⁽注) 2月及び3月の2回目は排水の放出なし。

3-2-5 排水中の全γ放射能連続測定結果

測定者	排水溝	項	E		放 出	状 況	
者	拼 小 傳	· 埃	Ħ	1 月	2 月	3 月	平均
		 降 雨 時	最高濃度 (Bq/cm³)	2.4×10^{-2}	7.5×10^{-2}	5.2×10^{-2}	
	原子力機構 原子力機構	中 州 中	平 均 濃 度 (Bq/cm³)	*	*	*	×
	(第2)	降雨時以外	最高濃度 (Bq/cm³)	×	*	×	
		年 的 时 55 7	平 均 濃 度 (Bq/cm³)	×	*	×	×
	原子力機構サイクル工研	排水中	最 高 濃 度 (Bq/cm³)	×	*	×	
	(再処理施設)	全 期 間	平 均 濃 度 (Bq/cm³)	*	*	*	×
- 県		 降 雨 時	最高濃度 (Bq/cm³)	×	*	×	
不	原子力機構 大 洗	中 四 时	平 均 濃 度 (Bq/cm³)	*	*	×	×
	(北地区)	降雨時以外	最高濃度 (Bq/cm³)	×	*	×	
		年 的 时 以 7 ト	平 均 濃 度 (Bq/cm³)	*	*	*	×
		降雨時	最高濃度 (Bq/cm³)	*	*	*	
	原電		平 均 濃 度 (Bq/cm³)	×	×	×	*
	(東海第二)	降雨時以外	最高濃度 (Bq/cm³)	*	*	*	
			平 均 濃 度 (Bq/cm³)	×	*	×	×

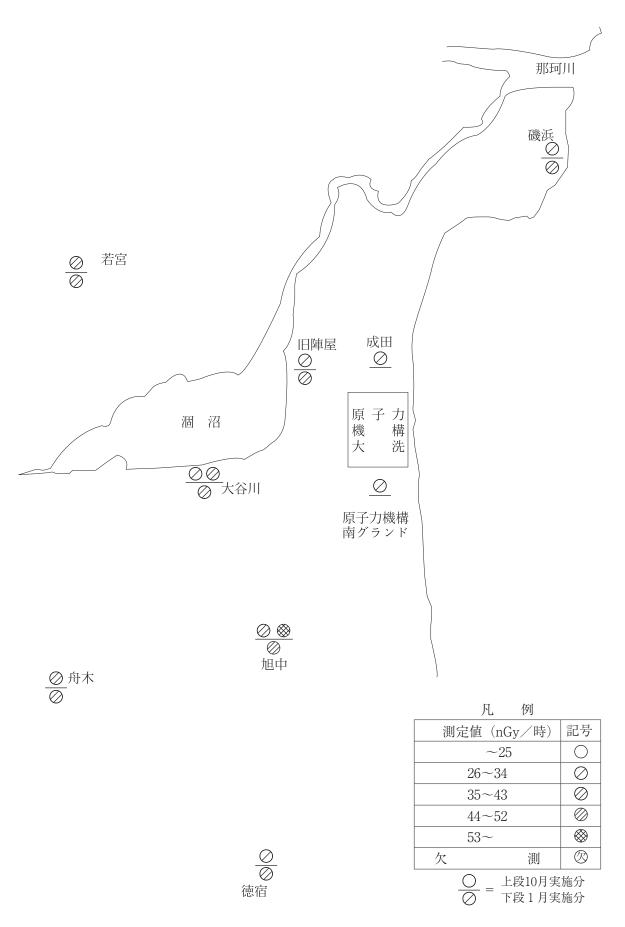
⁽注) 3ヶ月の平均は時間値を合計して平均をとる計算方法にて算出

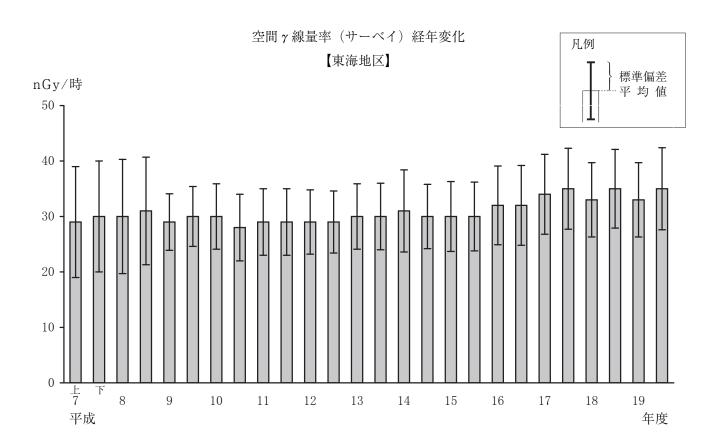
Ⅲ-2 長期的変動調査結果

1 環境における測定結果

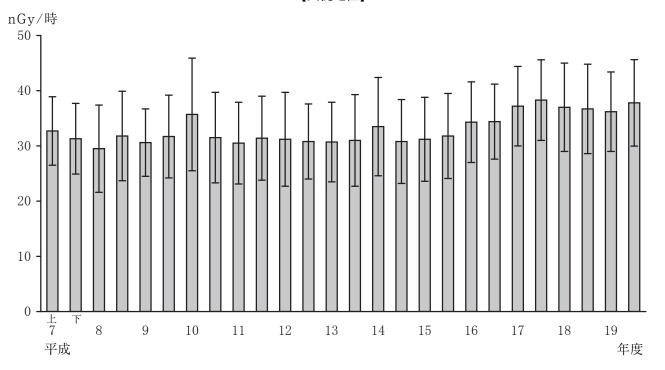
1-1 空間γ線量率測定結果

1-1-1 サーベイ


測	2Hit		بـــر	ᅫᆈ	Ŀ		測定	直(nGy/時)
測定者	測		定	地	点	`	平成19年10月	平成20年1月
	東	海	村	舟	石	Ш	28	
		"		須	和	間	33	
		"		豊		尚	34	
		"		外		宿	40	
	常陸	太田	市	真		弓	38	
		"		佐		竹	39	
	日	<u> </u>	市	河	原	子	30	
	那	珂	市	額		田	40	
県		"		瓜		連	39	
不	ひた	ちなっ	か市	部	田	野	26	
	大	洗	町	成		田	28	
		"		磯		浜	30	
	茨	城	町	若		宮	36	
	鉾	田	市	大	谷	Ш	29	
		"		旭	中 学	校	41	
		"		舟		木	35	
		"		徳		宿	28	
	水	戸	市	石		JII	33	
原	東	海	村	舟	石	Ш	26	
子力		"		須	和	間	38	
機構		"		照		沼	33	
子力機構原科研	ひた	ちなっ	か市	稲		田	28	
研		"		宮		前	26	
原子	大	洗	町	原子力	口機構南グラ	ランド	31	
原子力機構大洗		"		旧	陣	屋	32	
構大	鉾	田	市	大	谷	Ш	43	
洗		"		旭	中 学	校	59	


測	SHrif.	,	-lıL			測定	直(nGy/時)
測定者	測	定	地	点		平成19年10月	平成 20 年 1 月
	東 海	村	舟	石	Ш		23
	"		須	和	間		28
	"		豊		尚		42
جاد	"		外		宿		32
水	"		照		沼		40
戸	常陸太	田市	真		弓		45
	日 立	市	河	原	子		39
原	那 珂	市	額		田		45
	"		瓜		連		48
子	ひたちな	か市	宮		前		42
力	"		稲		田		36
	"		部	田	野		44
事	大 洗	町	旧	陣	屋		36
	"		磯		浜		43
務	茨 城	町	若		宫		40
所	鉾 田	市	大	谷	Ш		42
1 17/1	"		旭	中 学	校		46
	"		舟		木		41
	"		徳		宿		40
	水 戸	市	愛	宕	町		45
原子	東 海	村	舟	石	Ш		23
原子力機構サイクル工研	"		須	和	間		34
構サイ	"		照		沼		32
1 ク ル	ひたちな	か市	稲		田		27
工研	"		宮		前		24
原	東 海	村	舟	石	Ш		26
小小	"		須	和	間		37
	"		豊		尚		48
電	"		外		宿		28

空間γ線量率(サーベイ)分布図(平成19年10月, 20年1月)


【東海地区】 ⊘ 佐竹 瓜連 <u>⊘</u> ⊘ 外宿 久慈川 豊岡〇〇〇同 原電 舟石川 ○○ ○○ 原科研 新川 須和間 **⊘ ⊘ ⊘** 稲田 凡例 ◎ 照沼 記号 測定値 (nGy/時) \sim 25 \bigcirc \bigcirc 26~34 35~43 \oslash 0 44~52 \otimes 53~ 欠 測 ○ = 上段10月実施分下段1月実施分 (水戸地区) 部田野 那珂川 愛宕町 石川 \bigcirc 0 一十波湖

空間 γ 線量率(サーベイ)分布図(平成19年10月,20年 1 月) 【大洗地区】

空間 γ 線量率(サーベイ)経年変化 【大洗地区】

- (注) 東海地区、大洗地区ともに、次の理由から平均値が僅かに上昇
 - ・県の測定値が、モニタリング車の更新(H15.12)のためH16上期以降約6nGy/時上昇
 - ・水戸原子力事務所の測定値が、測定機器の校正(H17.3)のためH17上期以降約7nGy/時上昇

測定者	評価対象	平常の変動幅の上限
県・施設者	6ヶ月積算値	下表の各地点の値

				_	· ·		
測定者	測 定	地点	測定期間	測定値	1	平常の変動 幅 (上限)	測定
者				3ヶ月	計	(mGy / 6 ヶ月)	方 法
	東海村	原子力科学館	9.12~12.12(91)	0.08	0.15	0.19	蛍 光 ガラス
	71.		12.12~ 3.12(91)	0.07		0.10	線量計
	"	東海中学校	9.12~12.12(91)	0.07	0.13	0.16	"
	,	不 博 十 于 仅	12.12~ 3.12(91)	0.06	0.10	0.10	,
	"	舟 石 川 小 学 校	9.12~12.12(91)	0.08	0.16	0.18	"
	,	л 4 л 7· - Д	12.12~ 3.12(91)	0.08	0.10	0.10	,
	那可市	第一中学校	9.12~12.12(91)	0.07	0.13	0.19	"
	7) PJ 1 3	77 1 1 7 1X	12.12~ 3.12(91)	0.06	0.10	0.13	,
	"	額 田 小 学 校	9.12~12.12(91)	0.09	0.17	0.20	"
	,	做 出 7. 子 仅	12.12~ 3.12(91)	0.08	0.17	0.20	,
	"	第二中学校	9.12~12.12(91)	0.07	0.13	0.14	"
	,	第一个子 仅	12.12~ 3.12(91)	0.06	0.13	0.14	,
	"	本米崎小学校	9.12~12.12(91)	0.08	0.16	0.18	"
		平 不 閘 万 子 仅	12.12~ 3.12(91)	0.08	0.10	0.10	,
県	"	笠松運動公園	9.12~12.12(91)	0.07	0.14	0.16	"
	,	立位定到石區	12.12~ 3.12(91)	0.07	0.14		,
	"	瓜連小学校	9.12~12.12(91)	0.07	0.13	0.16	"
	,		12.12~ 3.12(91)	0.06	0.10		//
	日 立 市	日立商業高等学校	9.12~12.12(91)	0.08	0.15	0.19	"
	П <u>т</u> 113	日立四次同等于区	12.12~ 3.12(91)	0.07	0.10	0.13	ŕ
	"	日立第二高等学校	9.12~12.12(91)	0.08	0.15	0.19	"
	,	日立が一向サテス	12.12~ 3.12(91)	0.07	0.10	0.13	ŕ
	"	大久保小学校	9.12~12.12(91)	0.07	0.14	0.18	"
	7	八八八八十八	12.12~ 3.12(91)	0.07	0.14	0.10	,
	一	峰山中学校	9.12~12.12(91)	0.09	0.18	0.21	"
	市性人口川	・ 中	12.12~ 3.12(91)	0.09	0.10	0.21	-/
	ひたちなか市	勝田中央	9.13~12.13(91)	0.09	0.18	0.22	,,
	ひたりなが刊	<i>m</i> 山 T ズ	12.13~ 3.13(91)	0.09	0.10	0.22	"
	"	漁業無線局	9.13~12.13(91)	0.07	0.14	0.17	"
	7	点 木 無 沝 凡	12.13~ 3.13(91)	0.07	0.14	0.17	7

測定者	測	定 地 点	測定期間	測定値	(mGy)	平常の変動 幅(上限)	測定
者	(例	足 地 点	例 た 朔 问	3ヶ月	計	(mGy / 6 ヶ月)	方 法
	ひわれ なか古	阿字ヶ浦中学校	9.13~12.13(91)	0.07	0.14	0.17	蛍 光 ガラス
	07294#III	門子ヶ佣甲子収	12.13~ 3.13(91)	0.07	0.14	0.17	線量計
	"	那珂湊総合支所	9.13~12.13(91)	0.10	0.19	0.23	"
	//	那四侯爬石又用	12.13~ 3.13(91)	0.09	0.19	0.23	"
	大 洗 町	· 大洗南中学校	9.13~12.13(91)	0.09	0.18	0.20	"
	八 亿 四	人 化 用 于 女	12.13~ 3.13(91)	0.09	0.16	0.20	7
	"	磯 浜 小 学 校	9.13~12.13(91)	0.07	0.14	0.17	<i>'</i> ,
	,	贼 供 小 于 仅	12.13~ 3.13(91)	0.07	0.14	0.17	"
	 鉾 田 市	· 旭 北 小 学 校	9.13~12.13(91)	0.08	0.15	0.18	"
	少十 □□ III	旭北小子仪	12.13~ 3.13(91)	0.07	0.13	0.10	,
	"	旭南小学校	9.13~12.13(91)	0.09	0.17	0.21	"
 県	,	旭用小子仅	12.13~ 3.13(91)	0.08	0.17	0.21	,
不	,,	舟 木 小 学 校	9.13~12.13(91)	0.07	0.13	0.16	"
	7	加水小子仅	12.13~ 3.13(91)	0.06	0.13	0.10	,
	水 戸 市	福荷第一小学校	9.13~12.13(91)	0.08	0.16	0.17	"
	\(\frac{1}{2}\)	個個 第一 7、子 仅	12.13~ 3.13(91)	0.08	0.10	0.17	,
	 茨 城 町	· 若 宮	9.13~12.13(91)	0.08	0.16	0.20	"
	<i>2</i> , <i>3</i> , 7,	41	12.13~ 3.13(91)	0.08	0.10	0.20	
	"	沼 前 小 学 校	9.13~12.13(91)	0.07	0.13	0.16	"
	,	10 的 7. 于 仅	12.13~ 3.13(91)	0.06	0.10	0.16	ŕ
	"	明光中学校	9.13~12.13(91)	0.09	0.17	0.20	"
	,		12.13~ 3.13(91)	0.08	0.17	0.20	,
	 水 戸 市	第五中学校	9.13~12.13(91)	0.07	0.14	0.17	"
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	77 1 1 1 1	12.13~ 3.13(91)	0.07	0.11	0.11	
	周辺監	視 区 域 境 界	9.27~12.27(91)	0.09	0.18	0.20	"
原	((MP-11)	12.27~ 3.27(91)	0.09	0.10	0.20	
子力	,	(-	9.27~12.27(91)	0.07	0.14	0.21	"
機	((Pu研裏)	12.27~ 3.27(91)	0.07	V.14	0.21	·
構原		"	9.27~12.27(91)	0.07	0.15	0.17	"
科	((MP - 17)	12.27~ 3.27(91)	0.08	0.10	0.11	ŕ
研		"	9.27~12.27(91)	0.08	0.16	0.20	"
	((MP - 18)	12.27~ 3.27(91)	0.08	0.10	0.20	ŕ

測定者			地 点		測定期間	測定値	(mGy)	平常の変動 幅(上限)	測定
者			地 点		例 足 別 问	3ヶ月	計	(mGy / 6 ヶ月)	方 法
	周辺			竟 界	9.27~12.27(91)	0.09	0.18	0.21	蛍 光 ガラス
		(M S	- 2)		12.27~ 3.27(91)	0.09	0.10	0.21	線量計
	東海	· 村新	川下	流	9.27~12.27(91)	0.09	0.17	0.19	"
	水 (1	फ 11 का	/11 1	1/IL	12.27~ 3.27(91)	0.08	0.17	0.19	,
		,	宿		9.27~12.27(91)	0.09	0.18	0.20	"
百			76		12.27~ 3.27(91)	0.09	0.10	0.20	,
原	,	, रिता	漕ヶ浦	古 田	9.27~12.27(91)	0.06	0.11	0.14	"
子	,		イローク イ田	円 四	12.27~ 3.27(91)	0.05	0.11	0.14	,
		,	漕ヶ	甫 西	9.27~12.27(91)	0.08	0.16	0.18	"
カ	, , , , , , , , , , , , , , , , , , ,	, 31-1	信り(R 13	12.27~ 3.27(91)	0.08	0.10	0.10	"
Lata	,	,白		方	9.27~12.27(91)	0.08	0.16	(注1) 0.18	"
機	, , , , , , , , , , , , , , , , , , ,)J	12.27~ 3.27(91)	0.08	0.10	0.16	//
構	,	· E	電グラント	いかま	9.27~12.27(91)	0.09	0.18	0.20	"
""	, , , , , , , , , , , , , , , , , , ,	分	电グフィー	. 네다 12명	12.27~ 3.27(91)	0.09	0.10	0.20	,,
原	,	, JII	木	根	9.27~12.27(91)	0.09	0.17	0.20	"
	<i>"</i>	<i>)</i> 11		110	12.27~ 3.27(91)	0.08	0.17	0.20	"
科	,	, 須	和	問	9.27~12.27(91)	0.08	0.16	0.18	4
研研	, , , , , , , , , , , , , , , , , , ,	ク	411	l⊨ĵ	12.27~ 3.27(91)	0.08	0.10		"
191		, 亀		下	9.27~12.27(91)	0.11	0.21	0.25	"
	, , , , , , , , , , , , , , , , , , ,	电		1.	12.27~ 3.27(91)	0.10	0.21	0.25	,,
	,	, 亩	海中	学 校	9.27~12.27(91)	0.06	0.12	0.16	"
	,	~	7 中一	子 仅	12.27~ 3.27(91)	0.06	0.12	0.10	,
	水 戸	ョ 地 ブ	方 気 象	. 台	9.27~12.27(91)	0.07	0.13	0.15	"
	<i>N F</i>	- 1E /		• Ц	12.27~ 3.27(91)	0.06	0.13	0.13	,
	周辺			竟 界	9.26~12.26(91)	0.09	0.17	0.20	TLD
原元		(S-	- 1)		12.26~ 3.25(90)	0.08	0.17	0.20	1111
力機					9.26~12.26(91)	0.08	0.15	0.18	,,
構	(S-6)		12.26~ 3.25(90)	0.07	0.13	0.10	"		
原子力機構サイクル					9.26~12.26(91)	0.08	0.15	0.18	,,
ルー		(S-	- 8)		12.26~ 3.25(90)	0.07	0.10		"
工 研	L ガ			9.26~12.26(91)	0.07	0.15	0.19	"	
		(S-	-11)		12.26~ 3.25(90)	0.08	0.10	0.19	

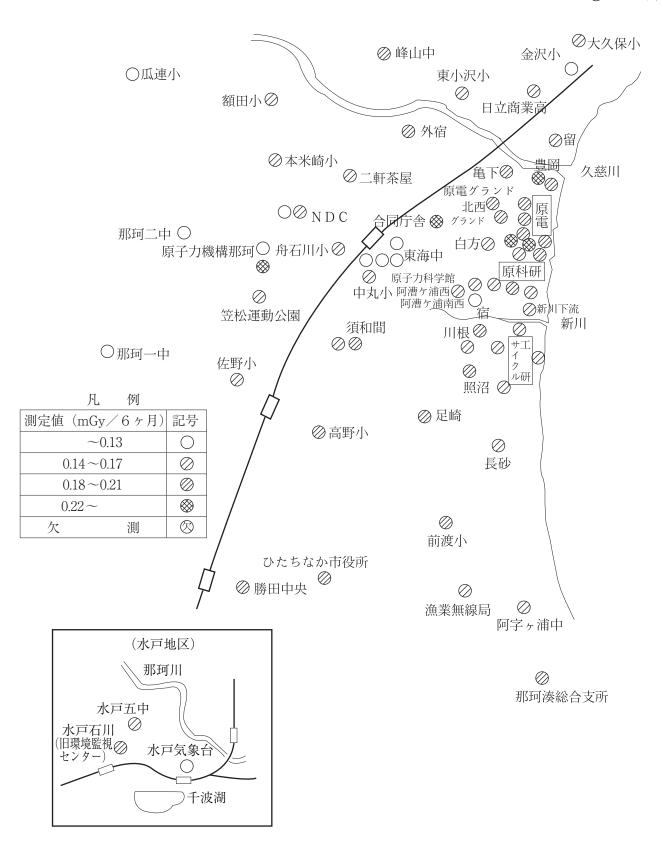
測定者	測		地	—— 点	î		測定期間	測定値	(mGy)	平常の変動 幅(上限)	測定
者	1243	, L	<i>></i> [5	711	`		183 AC 893 FF3	3ヶ月	計	(mGy / 6 ヶ月)	方 法
	 東 海 村	照	沼	公	民	館	9.26~12.26(91)	0.09	0.18	0.23	TLD
	八 1 1	7111	111		14	ΣΠ	12.26~ 3.25(90)	0.09	0.10	0.20	1111
	"	JII	根	公	民	館	9.26~12.26(91)	0.10	0.19	0.21	"
	,	/ II	110		14	口具	12.26~ 3.25(90)	0.09 (0.10)	(0.20)	0.21	,
	"	須	和目	間 公	. 足	硆	9.26~12.26(91)	0.09	0.18	0.20	"
匠	,	/只	<u> 1</u>	ロ ム	14	口具	12.26~ 3.25(90)	0.09	0.10	0.20	,
原	"	外	宿	公	民	館	9.26~12.26(91)	0.09	0.19	0.22	"
子	,	フト 	18		174	日	12.26~ 3.25(90)	0.10	0.19	0.22	7
	,,	中	丸	小	学	校	9.26~12.26(91)	0.08	0.16	0.20	"
力	,	Т	九	/],	于	112	12.26~ 3.25(90)	0.08 (0.09)	(0.17)	0.20	,
機	"	東	海	中	学	校	9.26~12.26(91)	0.07	0.13	0.16	"
	,	木	伊	77	子	仅	12.26~ 3.25(90)	0.06	0.13	0.10	//
構	"	合	同	J	宁	舎	9.26~12.26(91)	0.11	0.21	0.24	"
 			(]]	日役場	<u>(</u>		12.26~ 3.25(90)	0.10 (0.11)	(0.22)	0.24	//
)	ひたちなか市	E.	砂	八	R.	名古	9.26~12.26(91)	0.08	0.16	0.21	"
イ	0.59&\\\	長	119	公	民	館	12.26~ 3.25(90)	0.08	0.10		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
	"	足	崎	公	民	館	9.26~12.26(91)	0.10	0.19	0.21	"
ク	,	足	ΗП	4	尺	民日	12.26~ 3.25(90)	0.09	0.19	0.21	//
ル	"	前	渡	ıl.	学	校	9.26~12.26(91)	0.10	0.19	0.21	"
	,	ŀΗ	()文	小	子	仅	12.26~ 3.25(90)	0.09 (0.10)	(0.20)	0.21	//
エ	"	高	野	小	兴	校	9.26~12.26(91)	0.10	0.19	0.22	"
研	,	同	到	\J,	子	仅	12.26~ 3.25(90)	0.09	0.19	0.22	//
1 121	"	佐	野	小	兴	松	9.26~12.26 91)	0.08	0.16	0.18	"
	,	7/.	到	\J\	子	仅	12.26~ 3.25(90)	0.08	0.10	0.16	"
	"	市		役		所	9.26~12.26(91)	0.09	0.18	0.21	"
	,	111		1X		F)	12.26~ 3.25(90)	0.09	0.10	0.21	//
					9.26~12.26(91)	0.09	0.17	0.20	"		
	水戸市石川(旧環境監視セン		ノツ ー 		12.26~ 3.25(90)	0.08	0.17	0.20			
原	周辺監視区域境	 境	界	9.19~12.19(91)	0.07	0.14	0.19	,,			
力機	(敷	2 監 悦 区 域 境 。		12.19~ 3.19(91)	0.07	0.14	0.19	"			
原子力機構大洗	"				9.19~12.19(91)	0.06	0.13	0.16	"		
洗	(正		F	月)			12.19~ 3.19(91)	0.07	0.13	0.10	

測定者	測 定 地 点	測定期間	測定値(-	平常の変動 幅 (上限)	測 定 方 法
百		0.10.10.10(01)	3ヶ月	計	(mGy / 6 ヶ月)	
	周辺監視区域境界	9.19~12.19(91)	0.07	0.14	0.17	TLD
	(敷 地 東)	12.19~ 3.19(91)	0.07			
	// /#// III. ++\	9.19~12.19(91)	0.06	0.12	0.15	"
	(敷 地 南)	12.19~ 3.19(91)	0.06			
原	//	9.19~12.19(91)	0.07	0.14	0.17	"
	(敷 地 西)	12.19~ 3.19(91)	0.07			
_	(11) 1 70 171 177	9.19~12.19(91)	0.07	0.13	0.17	"
子	(排水監視施設)	12.19~ 3.19(91)	0.06			
	"	9.19~12.19(91)	0.07	0.14	0.18	"
カ	(No.1)	12.19~ 3.19(91)	0.07			
	"	9.19~12.19(91)	0.06	0.12	0.17	"
機	(No.2)	12.19~ 3.19(91)	0.06			
	大 洗 町 大洗南中学校	9.19~12.19(91)	0.08	0.17	0.20	"
抽		12.19~ 3.19(91)	0.09			
構	/ 北 松 川	9.19~12.19(91)	0.09	0.18	0.21	"
		12.19~ 3.19(91)	0.09			
大	 鉾 田 市 上	9.19~12.19(91)	0.07	0.14	0.16	"
		12.19~ 3.19(91)	0.07			
洗	 大 洗 町 成 田	9.19~12.19(91)	0.06	0.13	0.17	"
		12.19~ 3.19(91)	0.07			
	/ 夏 海	9.19~12.19(91)	0.09	0.18	0.23	"
	~ .,,	12.19~ 3.19(91)	0.09	0.10	0.20	
	 鉾 田 市 下 太 田	9.19~12.19(91)	0.06	0.12	0.17	"
		12.19~ 3.19(91)	0.06	0.12	0.11	
原子	周辺監視区域境界	9.14~12.14(91)	0.07	0.13	0.16	"
原子力機構那	(MP - 1)	12.14~ 3.14(91)	0.06	0.10	0.10	
構那	"	9.14~12.14(91)	0.14	0.25	0.26	"
珂	(MP - 2)	12.14~3.14(91)	0.11	0.20	0.20	
原	周 辺 監 視 区 域 境 界	9.26~12.26(91)	0.09	0.18	(注 2) 0.20	"
	(MP – A)	12.26~ 3.26(91)	0.09	0.10	0.20	7
	周辺監視区域境界	9.26~12.26(91)	0.10	0.20	0.23	"
電	(MP-B)	12.26~ 3.26(91)	0.10	0.20	U.43	″

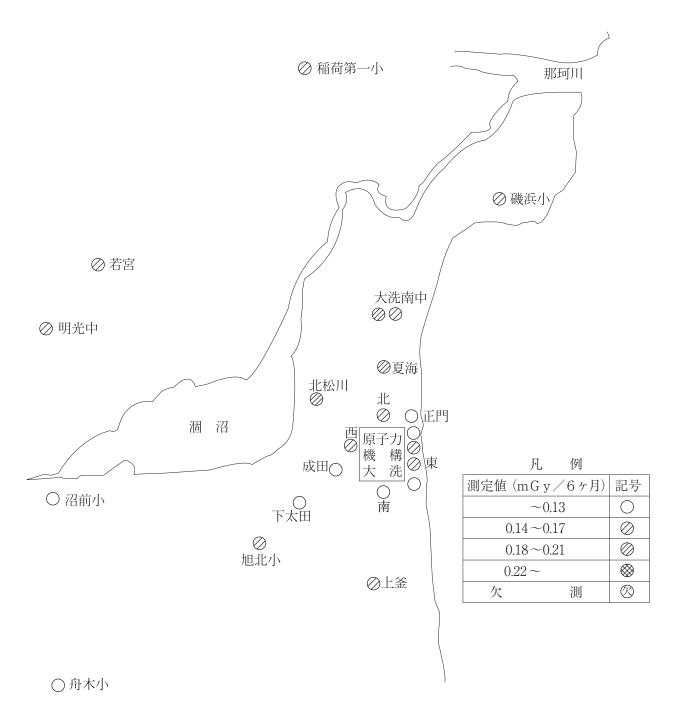
測定者				地 点		測定期間	測定値	(mGy)	平常の変動 幅(上限)	測定
者		织り	Æ	地 点		例	3ヶ月	計	(mGy / 6 ヶ月)	方 法
	周	辺	監視	区 域 境	界	9.26~12.26(91)	0.10	0.20	0.25	TLD
			(MP	- C)		12.26~ 3.26(91)	0.10	0.20	0.23	
原			"			9.26~12.26(91)	0.09	0.18	0.21	"
			(MP	- D)		12.26~ 3.26(91)	0.09	0.10	0.21	,
	東	海	村東	海中学	校	9.26~12.26(91)	0.06	0.12	0.16	"
		1毋	11 /	10年 11 丁	12	12.26~ 3.26(91)	0.06	0.12	0.10	,
		11	百	電グラン	K	9.26~12.26(91)	0.09	0.18	0.23	"
		<i>"</i>	/尔	电ククイ	1,	12.26~ 3.26(91)	0.09	0.10	0.23	"
		11	豊		出	9.26~12.26(91)	0.11	0.22	0.27	"
					lm1	12.26~ 3.26(91)	0.11	0.22	0.27	,
		11	=	軒 茶	屋	9.26~12.26(91)	0.08	0.16	(注3)	"
				十 次)主.	12.26~ 3.26(91)	0.08	0.10	0.17	ŕ
	日日	立	市	留		9.26~12.26(91)	0.08	0.16	0.19	"
		1/	111	<u> </u>		12.26~ 3.26(91)	0.08	0.10	0.13	,
		11	亩	小沢小学	校	9.26~12.26(91)	0.08	0.16	0.21	"
電				\1. \(\(\lambda \) \(\) \(\) \(\) \(\) \(\)	1/2	12.26~ 3.26(91)	0.08	0.10	0.21	ŕ
		"	全	沢小学	校	9.26~12.26(91)	0.06	0.12	0.16	"
			21/2	A C 31 1		12.26~ 3.26(91)	0.06	0.12	0.10	·
N	敷	地	境	界(南側)	10. 1~ 1. 7(98)	0.07 (0.06)	0.14	0.20	"
D	<i>5</i> .	76	-96	31. (H3 183		1. 7~ 4. 1(85)	0.07	(0.13)	0.20	ŕ
			"	(東側)	10. 1~ 1. 7(98)	0.08	0.15	0.22	"
С			″	(木 則)	1. 7~ 4. 1(85)	0.07 (0.08)	(0.16)	0.22	"
	周	辺	監視	区域境	界	10. 1~ 1. 4(95)	0.12 (0.11)	0.00	0.04	
東			(MB			1. 4~ 4. 3(90)	0.11	0.22	0.24	"
			"	,		10. 1~ 1. 4(95)	0.12 (0.11)	0.00	0.3-	
			(MB			1. 4~ 4. 3(90)	0.11	0.22	0.25	"
				,		10. 1~ 1. 4(95)	0.11 (0.10)	_		
大			(MB			1. 4~ 4. 3(90)	0.10	0.20	0.24	"

⁽注)宇宙線成分及びTLD・蛍光ガラス線量計の自己汚染の寄与分を除く。

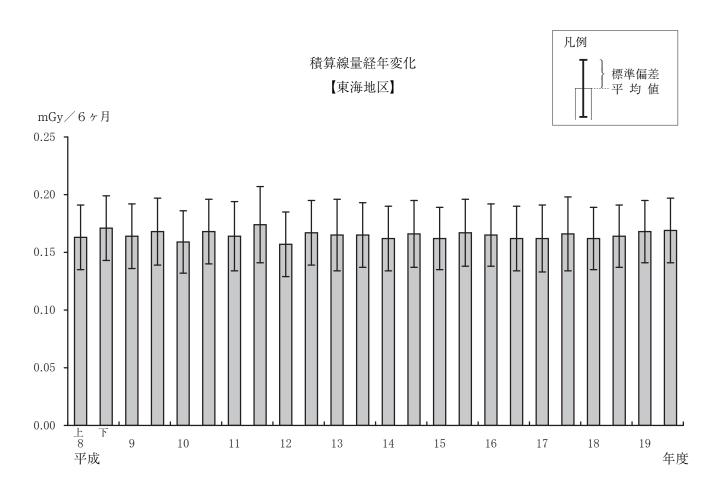
測定値の()は91日当たりに換算した値。なお、()書きがないものは、91日当たりに換算しても値が変わらない場合である。

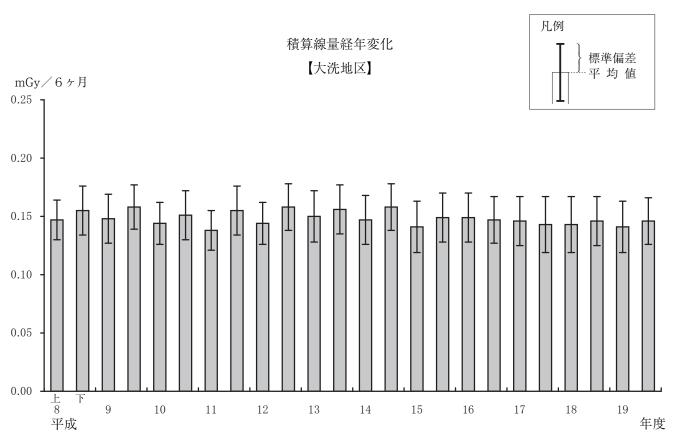

⁽注1) 原子力機構原科研 東海村白方:周辺環境の変化によりバックグランドが上昇したため、平常の変動幅の上限値は、次回(平成20年度)見直しまでの暫定値である。

⁽注2) 原電 周辺監視区域境界 (MP-A):測定位置を変更したため、平常の変動幅の上限値は、次回 (平成20年度) 見直しまでの暫定値である。


⁽注3) 原電 東海村二軒茶屋: フェンス取替え工事でフェンス土台のコンクリート部が増加したため、平常の変動幅の上限値は、次回(平成20年度)見直しまでの暫定値である。

積算線量(TLD・蛍光ガラス線量計)分布図(平成19年10月~20年3月) 【東海地区】


○日立二高

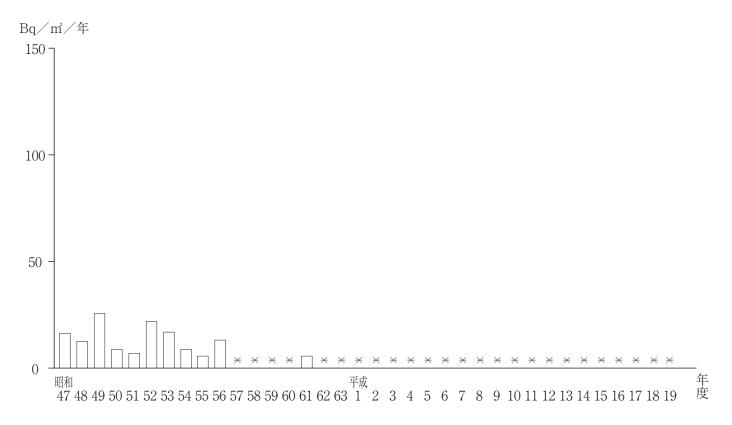


積算線量(TLD・蛍光ガラス線量計)分布図(平成19年10月〜20年3月) 【大洗地区】

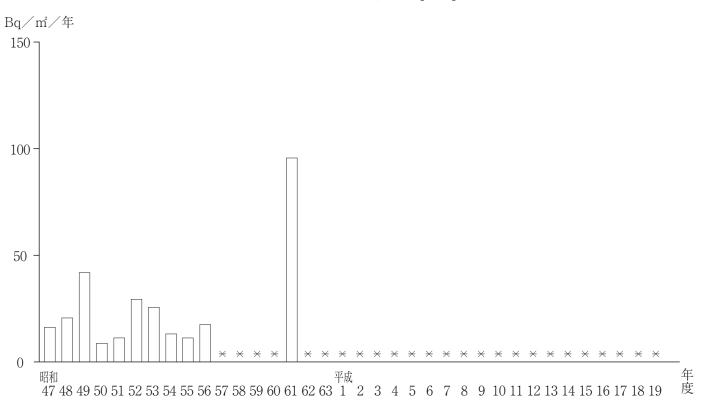
∅旭南小

1-2 漁網表面吸収線量率の測定結果

測 定 者	項	I	採	取	地	点	測 定 期 間 (曳 航 時 間)	測	定	値
原子力	γ (nGy/	/時)	 古 海	Setr 1	2 7	曳航	1. 8~ 3.19		*	
機工構研	β (nGy/	/時)	東海	₹₩ V		戈 机	(40時間)		*	


1-3 大気中放射能測定結果

1-3-1 降下塵中の放射性核種分析結果(54Mn他)


測	Loc) Ties	ы. Ь			核	種 ·	分析	値(Bq/	m ²)	
測定者	採 取	地 点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
			10. 1	×	*	*	*	*	*	×
			11. 1	*	*	*	*	*	*	×
- 県		悉会町	12. 3	*	*	*	*	*	*	×
宗 	水戸市	发 石 判	1. 4	*	*	*	*	*	*	×
			2. 1	*	*	*	*	*	*	×
			3. 3	*	*	*	*	*	*	×

測	Let Ties	D.L.	<u> </u>			核	種 •	分析	値(Bq/	(m^2)	
測定者	採取	地	点	採取月日	⁵⁴ Mn	⁶⁰ Co	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
				10. 1	*	*	*	*	*	*	*
原子				11. 1	*	*	*	*	*	*	*
力機	原子	力機	構	12. 3	*	*	*	*	*	*	*
構原	原科	研構	内	1. 4 ? 2. 1	*	*	*	*	*	*	*
科研				2. 1	*	*	*	*	*	*	*
				3. 3	*	*	*	*	*	*	*
				10. 1	×	*	*	*	*	*	×
原子				11. 1 \(\)\(\)\(\)\(\)\(\)\(\)	×	*	*	*	*	*	*
— 力 — 機	原子:	力機	構	12. 3	*	*	*	*	*	*	*
構	大 洗	構	内	1. 4	×	*	*	*	*	*	×
大洗				2. 1	×	*	*	*	*	*	×
				3. 3	*	*	*	*	*	*	×

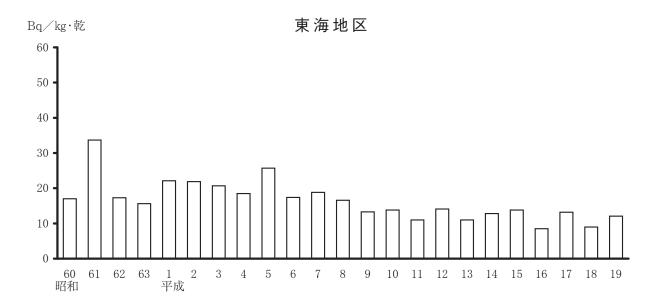
降下塵中のSr-90経年変化【水戸】

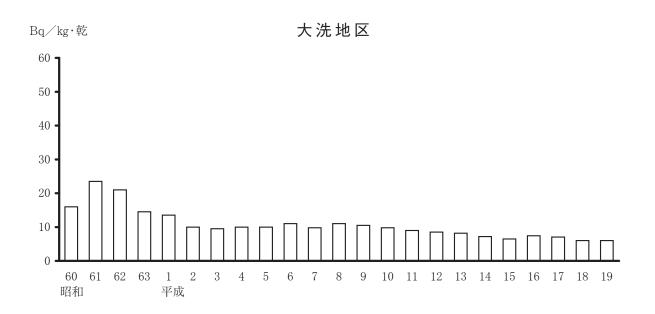
1-4 陸土中の放射能測定結果

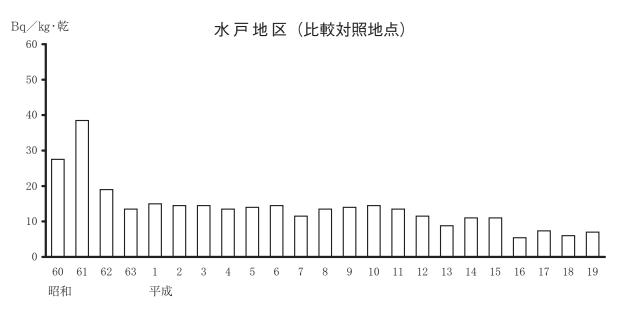
1-4-1 土壌中の放射性核種分析結果 (54Mn他)

;::ii	선 내 대 전	松田口口		分 析	値(Bq/	/kg・乾)	
測定者	採取地点	採取月日	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
	水戸市見川	11.14	*	*	*	4.9	*
県	那珂市横堀	11.14	*	*	*	8.4	*
/ 	東海村舟石川	11.14	*	*	*	5.0	*
	ひたちなか市 常 陸 那 珂	11.14	*	*	*	8.3	*
原子力機構 原 科 研	東海村須和間	11.13	*	*	*	13	*
原子力機構 サイクル工研	ひたちなか市長砂	11.16	*	*	*	7.1	*
原子力機構 大 洗	鉾 田 市 飛 沢	11. 1	*	*	*	6.1	*
原電	日 立 市 留	11. 5	*	*	*	4.2	*

⁽注) ¹³⁷Csの検出は過去の核実験の影響による。


1-4-2 河底土中の放射性核種分析結果 (54Mn他)


測定者	採取地点	採取月日		分 析	値(Bq/	/kg・乾)	
側 足 有	採取地点	1本収力口	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
原子力機構 サイクル工研	東海村新川河口	10.25	*	*	*	*	×


1-4-3 海岸砂中の放射性核種分析結果(54Mn他)

训件本	松 肋 肿 占	松斯日口		分 析	値(Bq/	/kg・乾)	
測定者	採取地点	採取月日	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
県	大洗町大貫	1.17	*	*	*	*	×
原子力機構	日立市久慈	1.11	*	*	*	*	×
サイクル工研	ひたちなか市 阿 字 ヶ 浦	1.11	*	*	*	*	*

土壌中のCs-137濃度の経年変化

1-5 陸水中の放射能測定結果

1-5-1 河川水及び湖沼水中の放射性核種分析結果 (54Mn他)

细点本	拉 小 小 上	松小日口	水温	塩素量		核種	分析	値(Bo	q/L)	
測定者	採水地点	採水月日	(℃)	(‰)	³ H	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
県	那珂川下流 (国田大橋)	10.24	16.5		×	*	×	*	*	*
	新川中流(宮前橋)	10.22	16.4		*	*	*	*	*	*
水戸原子力事 務 所	久慈川下流 (榊橋)	10.19	16.6		*	*	*	*	*	*
	那珂川下流 (中河内)	10.30	16.9		*	*	*	*	*	*
原子力機構	新川河口	10.25	15.3	0.509	*	*	*	*	*	*
サイクル工研	阿漕ヶ浦	10.25	18.1		*	*	*	*	*	*
原子力機構大 洗	涸 沼 (北松川)	10.23	18.9	1.04	×	*	×	*	*	*

1-5-2 飲料水中の放射性核種分析結果 (54Mn他)

细点类	種	拉 小 址 占	松小日口	水温		核種	分析	値(Bo	q/L)	
測定者	別	採水地点	採水月日	(℃)	⁵⁴ Mn	⁶⁰ Co	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	U
県	水	水戸原子力事務所 (那珂川)	10.24	20.5	*	*	*	×	*	
原子力機構原 科 研		東海村須和間 (久慈川)	10. 2	23.8	*	*	*	*	*	
原子力機構サイクル工研	道	ひたちなか市長砂 (那珂川)	10. 4	24.0	*	*	*	*	*	
原子力機構大 洗		大洗町北松川 (地下水)	10.23	18.4	*	*	*	×	*	
原電	水	日 立 市 留 (久慈川)	10. 5	21.5	*	*	*	*	*	
県	井	東海村村松	10.24	20.4	*	*	*	*	*	×
J C O	 11	東海村舟石川	10.11	18.0						×
	戸	東海村村松	10.11	21.0						×
三菱原燃	水	東海村舟石川	10.11	22.0						*
原燃工	<i>/</i> /\	東海村川根	10.24	17.3						×

1-6 海洋における放射能測定結果

1-6-1 海水中の放射性核種分析結果 (54Mn他)

训件类	採水海域	採水		分		析		値(B	q/L)	
測定者	探 水 海 域	月日	⁵⁴ Mn	⁶⁰ Co	90Sr	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce
	久 慈 沖(A)	10.15	*	*	*	*	*	*	*	*
	サイクル エ 研 沖(G)	10.15	*	*	*	*	*	*	*	*
県	阿字ヶ浦沖(I)	10.15	*	*	*	*	*	*	*	*
 	那 珂 湊 沖(J)	10.15	*	*	*	*	*	*	*	*
	大 貫 沖(K)	10.15	*	*	*	*	*	*	*	*
	再処理排水 (P) 放出口周辺	10.11	*	*	*	*	*	*	*	*
原子力機構原 科 研	原 科 研 沖(C)	10.15	*	*	*	*	*	*	*	*
	原子力機構 (F)サイクル工研沖	10.22	*	*	*	*	*	*	*	*
原子力機構サイクル工研	長 砂 沖(H)	10.11	*	*	*	*	*	*	*	*
	再処理排水 (P) 放出口周辺	10.11	*	*	*	*	*	*	*	*
原子力機構	原子力機構(L) 大 洗 沖(L)	10.22	*	*	*	*	*	*	*	*
大洗	" (M)	10.22	*	*	*	*	*	*	*	*
原電	原 電 沖(B)	10.10	*	*	*	*	*	*	*	*

4 10 17

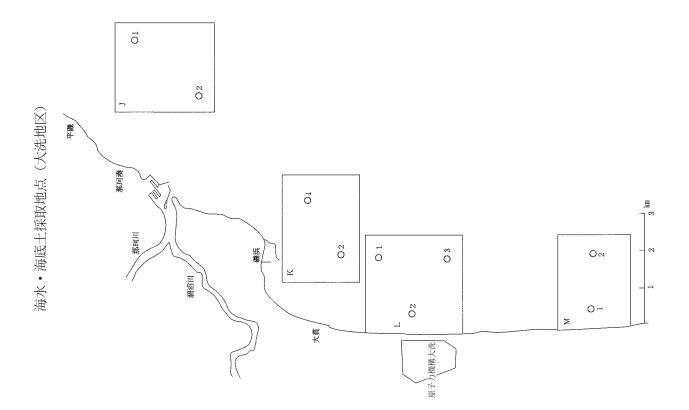
 5
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4
 10
 4</ 4 10 4 10 4 15 16 4 10 4 4 10 4 10 · 10 · 12 · 13

 0.004
 □ *
 □ *
 □ *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 *
 <t 4 10 4 10 4 10 4 9 10

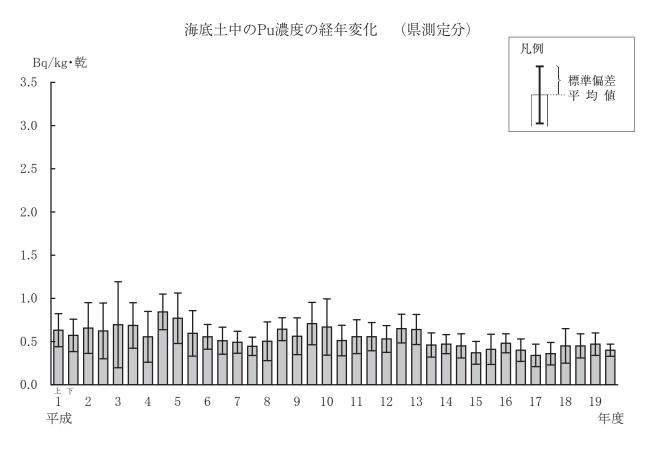
 * Image: Control of the control of S r - 90Bq/L 0.007 $\begin{array}{c} \mathrm{Bq/L} \\ 0.007_{\mathrm{J}} \end{array}$ 0.004 0.005 0.006 -年 東 0.006 0.005

*: 検出下限値 (0.004Bq/L) 未満

海水中の主要放射性核種濃度の経年変化 -県測定-


1-6-2 海底土中の放射性核種分析結果 (54Mn他)

2Hi	拉 取 次 社	採取			分	₹	<u></u>	値(E	Bq/kg・乾)		
測定者	採 取 海 域	月日	⁵⁴ Mn	⁶⁰ Co	90Sr	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
	久 慈 沖(A)	1.15	*	*	*	*	*	*	*	*	0.43
	サイクル エ 研 沖(G)	1.15	*	*	*	*	*	*	*	*	0.43
県	阿字ヶ浦沖(I)	1.15	*	*	*	*	*	*	0.44	*	0.51
,	那 珂 湊 沖(J)	1.15	*	*	*	*	*	*	1.4	*	0.36
	大 貫 沖(K)	1.15	*	*	*	*	*	*	*	*	0.29
	再処理排水(P) 放出口周辺(P)	1.15	*	*	*	*	*	*	0.40	*	0.38
原子力機構原 科 研	原 科 研 沖(C)	1.10	*	*	*	*	*	*	*	*	0.15
	原子力機構(F)サイクル工研沖(F)	1.22	*	*	*	*	*	*	*	*	0.31
原子力機構 サイクル エ 研	長 砂 沖(H)	1.22	*	*	*	*	*	*	*	*	0.38
	再処理排水(P) 放出口周辺(P)	1.15	*	*	*	*	*	*	0.46	*	0.36
原子力機構	原子力機構(L) 大 洗 沖(L)	1.25	*	*	*	*	×	*	×	*	
大洗	" (M)	1.25	*	*	*	*	×	*	×	*	
原電	原 電 沖(B)	1.16	*	*	*	*	*	*	0.41	*	


⁽注) ¹³⁷Cs, Puの検出は過去の核実験の影響による。

海水・海底土採取地点(東海地区) 02 04 07 0 03 90 P 01 0 0304 2 05 0 0 2 03 0 05 90 O_2 05 05 0 07 0 Q 0 5 0 入慈川 B O1 /c 01 03 S _ 阿字ヶ浦 再処理排水放出口 海水・海底土 採取地点 原科研 サイクル工研

日本近海の海底土中放射能濃度

放射能濃度(Bq / kg · 乾土) 239, 240 Pu	1 伊 勢 湾 2 大 阪 湾 3 東 京 湾 4 若 狭 湾 5 鹿児島湾	239, 240Pu 0.59 ± 0.03 0.48 ± 0.02 1.5 ± 0.06 1.2 ± 0.05	137Cs 3.8±0.11 1.4±0.11 2.5±0.11	
2 大阪湾 0.48±0.02 1.4±0.11 3 東京湾 1.5±0.06 2.5±0.11 4 若狭湾 1.2±0.05 3.1±0.11 5 鹿児島湾 1.4±0.07 1.2±0.09 6 広島湾 1.9±0.08 2.0±0.10 7 新潟湾 0.25±0.02 0.64±0.08 8 仙台湾 1.0±0.04 1.9±0.11 9 石狩湾 0.57±0.03 0.93±0.10 平均 0.99 1.9 季上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」	2 大阪湾 3 東京湾 4 若狭湾 5 鹿児島湾	0.48 ± 0.02 1.5 ± 0.06 1.2 ± 0.05	1.4±0.11 2.5±0.11	
2 大阪湾 0.48±0.02 1.4±0.11 3 東京湾 1.5±0.06 2.5±0.11 4 若狭湾 1.2±0.05 3.1±0.11 5 鹿児島湾 1.4±0.07 1.2±0.09 6 広島湾 1.9±0.08 2.0±0.10 7 新潟湾 0.25±0.02 0.64±0.08 8 仙台湾 1.0±0.04 1.9±0.11 9 石狩湾 0.57±0.03 0.93±0.10 平均 0.99 1.9 季上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」	2 大阪湾 3 東京湾 4 若狭湾 5 鹿児島湾	1.5 ± 0.06 1.2 ± 0.05	2.5±0.11	
4 若狭湾 1.2±0.05 3.1±0.11 5 魔児島湾 1.4±0.07 1.2±0.09 6 広島湾 1.9±0.08 2.0±0.10 7 新潟湾 0.25±0.02 0.64±0.08 8 仙台湾 1.0±0.04 1.9±0.11 9 石狩湾 0.57±0.03 0.93±0.10 平均 0.99 1.9 ### Left Company of the	4 若 狭 湾 5 鹿児島湾	1.2±0.05		1
5 鹿児島湾 1.4±0.07 1.2±0.09 6 広島湾 1.9±0.08 2.0±0.10 7 新潟湾 0.25±0.02 0.64±0.08 8 仙台湾 1.0±0.04 1.9±0.11 9 石狩湾 0.57±0.03 0.93±0.10 平均 0.99 1.9 再上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」	5 鹿児島湾		3.1 ± 0.11	\ \
6 広島湾 1.9±0.08 2.0±0.10 7 新潟湾 0.25±0.02 0.64±0.08 8 仙台湾 1.0±0.04 1.9±0.11 9 石狩湾 0.57±0.03 0.93±0.10 平均 0.99 1.9 再上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」			0.1 0.11	
7 新 潟 湾 0.25±0.02 0.64±0.08 8 仙 台 湾 1.0±0.04 1.9±0.11 9 石 狩 湾 0.57±0.03 0.93±0.10 平 均 0.99 1.9 4 3 基上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」 8	5 広島湾	1.4 ± 0.07	1.2±0.09	
8 仙 台 湾 1.0±0.04 1.9±0.11 9 石 狩 湾 0.57±0.03 0.93±0.10 平 均 0.99 1.9 主上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」	1	1.9 ± 0.08	2.0±0.10	9
9 石 狩 湾 0.57±0.03 0.93±0.10 平 均 0.99 1.9 E上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」 7 8 3	7 新潟湾	0.25 ± 0.02	0.64 ± 0.08	
平 均 0.99 1.9 事上保安庁海洋情報部「放射能調査報告書 平成18年調査結果」	3 仙台湾	1.0 ± 0.04	1.9±0.11	
在上保安庁海洋情報部「放射能調查報告書 平成18年調查結果」 8	石 狩 湾	0.57 ± 0.03	0.93±0.10	
8	平均	0.99	1.9	
	J ,		4	3

1-7 排水口近辺土砂中の放射性核種分析結果(54Mn他)

明点类	世上小生	採取		分	1		値 (E	Bq/kg·	乾)	
測定者	排水溝	月日	⁵⁴ Mn	⁵⁸ Co	⁶⁰ Co	90Sr	¹³⁷ Cs	¹⁵² Eu	¹⁵⁴ Eu	U
	第 1	1.15			*					
原子力機構原 科 研	第 2	1.15			×		*			
	第 3	1.15			×					
原子力機構大 洗	原子力機構大洗	1.10			×		*			
原電	東海発電所	1.15			*	*	*	*	*	
原 电	東海第二発電所	1.15	*	*	*					
ј с о	JCO・三菱原燃・ 原燃工・第一化学 共 同 排 水 溝	1.10								*

2 敷地内における測定結果

2-1 空間γ線量率測定結果

2-1-1 積算線量

測定者	評価対象	平常の変動幅の上限
施設者	6ヶ月積算値	下表の各地点の値

測定者	測定地点	測定期間	測定値	(mGy)	平常の変動幅 (上限)	測定
例 足 有	例 足 地 点	例 化 朔 间	3ヶ月	計	(工成) (mGy/6ヶ月)	方法
原子力機構	M S - 1	9.27~12.27(91)	0.08	0.16	0.19	蛍光ガラス
原科研	W1 3 — 1	12.27~ 3.27(91)	0.08	0.10	0.19	線量計

⁽注) 宇宙線成分及び蛍光ガラス線量計の自己汚染の寄与を除く。

Ⅲ-3 線量の推定結果

評価対象期間:平成19年4月~平成20年3月

1 積算線量による外部被ばく実効線量

	地		区名		実効線量	単 位	備 考
行			東 海 地	区	0.26	mSv	東海村, 那珂市
政	東	海	日 立 地	区	0.24	"	日立市, 常陸太田市
			ひたちなかっ	地区	0.28	"	ひたちなか市
区	大		洗 地	X	0.24	"	大洗町, 鉾田市, 水戸市(旧常澄村), 茨城町
域	比	較	対 照 地	点	0.24	"	水戸市
施			原子力機構原	科研	0.26	"	
設	東地	海区	原 子 力 機 サイクルコ		0.25	"	
境	九四		原	電	0.30	"	
界	大		洗 地	X	0.21	"	原子力機構大洗

- (注) 1 y線による外部被ばく実効線量
 - 2 実効線量への換算は、0.8Sv/Gyとし、資料2 (P.109~P.111) の地区毎の平均値に0.8を掛けて算出した。 3 宇宙線成分及び積算線量計の自己汚染の寄与を除く。

環境試料中の放射性核種分析結果に基づく成人の預託実効線量

東海, 大洗地区

7

	備考															mSv	m Crr
	拉	mSv							"	"		"	"			† 0.0001 mSv	
	油	III														14年	4
	Pu									n e	n e	0.0000	0.0000	0.0000	0.0000	0.0000	
	¹⁴⁴ Ce									n e	n e	n e	n e	n e	n e	n e	9
	¹³⁷ Cs	n e	n e	n e	n e	n e	n e			n e	n e	n e	n e	n e	n e	n e	ţ
	I_{1E1}	n e	n e	n e	n e											n e	ţ
	¹⁰⁶ Ru									n e	n e	n e	n e	n e	n e	n e	2
	$q_{ m N}_{ m 56}$									n e	n e	n e	n e	n e	n e	n e	2
	$^{95}\mathrm{Zr}$									n e	n e	n e	n e	n e	n e	n e	ç
	$^{90}\mathrm{Sr}$	n e	n e	0.0001	0.0001	n e	n e			n e	0.0001	n e	n e	0.0000	0.0000	0.0001	6000
	00 ₀₉									n e	n e	n e	n e	n e	n e	n e	2
	$^{54}\mathrm{Mn}$									n e	n e	n e	n e	n e	n e	n e	2
	H_{ϵ}							n e	n e							n e	2
- 1	核種	典	光	東	光	東	光	典	洗	無	栄	典	洗	典	洗	東	洪
とした。	当区	<u>₩</u>	\mathbb{K}	₩	\mathbb{X}	₩	+	<u>₩</u>	\times	₩	\mathbb{X}	<u>₩</u>	\times	<u>₩</u>	\mathbb{X}	₩	+
不等、入び過回	種目		7		*	北	←	4 ※ 参	以 文 文 之 之	4 米		果		活	账	1111	

比較対照地点

				1	
備考					合計 0.0001 mSv
位	mSv	1	1	"	計 0.00
<u></u>			\		√□
Pu					
¹⁴⁴ Ce					
¹³⁷ Cs	n e	n e	n e		n e
$ m I_{1E1}$	n e	n e			n e
$^{106}\mathrm{Ru}$					
$q_{ m N}_{ m 56}$					
32					
$^{ m JS}_{06}$	e u	0.0001	a u		0.0001
0) ₀₉					
$^{54}\mathrm{Mn}$					
$\mathrm{H}_{\mathrm{\epsilon}}$				n e	n e
核種地区	水戸	"	"	"	"
	乳	採	*	水	
種	#	垂	精	飲 料	11111111

※1 ne:核種分析結果がすべて検出限界未満のため、求められず。※2 資料1 (P.103~P.108) 及び線量算出要領(抜粋) (P.146~P.150) に基づき算出

(参考)

表

別

検出限界を用いて算出した場合の成人の預託実効線量

									I
	舗								合計 3.8×10 ⁻³ mSv (=0.0038mSv)
	Pu					3.7×10 ⁻⁵	3.7×10 ⁻⁶	7.3×10 ⁻⁶	3.9×10 ⁻⁴ 4.7×10 ⁻⁵
	¹⁴ Ce					3.0×10^{-4}	3.0×10^{-5}	6.1×10^{-5}	
	137Cs	3.8×10 ⁻⁴	1.9×10 ⁻⁴	3.3×10^{-4}		1.9×10 ⁻⁴	1.9×10 ⁻⁵	3.8×10 ⁻⁵	1.1×10 ⁻³
(mSv)	I ₁₈₁	2.3×10^{-4}	2.3×10 ⁻⁴						5.3×10 ⁻⁴ 4.7×10 ⁻⁴
	¹⁰⁶ Ru					4.1×10 ⁻⁴	4.1×10 ⁻⁵	8.2×10 ⁻⁵	5.3×10^{-4}
効 線	$q_{ m N}_{ m 26}$					8.5×10^{-6}	8.5×10^{-7}	1.7×10 ⁻⁶	1.1×10 ⁻⁵
3 無	$^{95}\mathrm{Zr}$					2.8×10 ⁻⁵	2.8×10 ⁻⁶	5.5×10 ⁻⁶	3.6×10 ⁻⁵
預託	$^{90}\mathrm{Sr}$	8.5×10 ⁻⁵	4.1×10 ⁻⁵	7.2×10^{-5}		8.2×10 ⁻⁵	8.2×10 ⁻⁶	1.6×10 ⁻⁵	3.0×10 ⁻⁴
	OO09					5.0×10 ⁻⁵	5.0×10 ⁻⁶	9.9×10 ⁻⁶	6.5×10^{-5}
	54Mn					1.0×10 ⁻⁵	1.0×10 ⁻⁶	2.1×10 ⁻⁶	8.0×10 ⁻⁴ 1.3×10 ⁻⁵
	H _E				8.0×10 ⁻⁴				8.0×10 ⁻⁴
	-	413	採	*	¥	操	操	操	
	<u>11111</u>				菜			採	11111111
	車	1	盐	業	緓	無	Щ(迧	

3 放出源情報に基づく実効線量

3-1 放射性気体廃棄物による実効線量

事業所名	原子力機構原科研	原子力機構サイクル工研	原子力機構大洗	修構大洗		原	
評価対象 施設名	(価 対 象 JRR-2, JRR-3, JRR-4, 燃料(i) 設 名 試験施設, NSRR, NUCEF	再処理施設	JMTR, HTTR	高速実験炉「常陽」	東海発電所 排気筒	東海発電所 その他排気口	東海第二発電所
評価対象期間	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日	平成19年4月1日~ 平成20年3月31日

からの	距離 (km)	1.3	3.0		
排気筒からの	方位	南西[南西]	南西 [南西]		
中田	東人川邑 (mSv)	0.0000	0.0000	0.0000 [0.0000]	ш
からの	距離 (km)	0.7	l		年3月31
排気筒からの	方位	北西 [北西]	I		原電観測 .日~平成20
中一年	取入順 (mSv)	0.0000	I	0.0000 [0.0000]	原電観測 平成19年4月1日~平成20年3月31日
からの	距離 (km)	1.1	I		
排気筒からの	方位	南西[南西]	I		
百十四	東ス人加島 (mSv)	0.0000 0	I	0.0000	
からの	距離 (km)	0.3	1.0		
排気筒からの	方位	南東	框		131 H
中	東入川邑 (mSv)	0.0000	0.0000	0.0000	原子力機構大洗観測 平成19年4月1日~平成20年3月31日
からの	距離 (km)	0.4	0.5		頁子力機構 4 月1日~
排気筒からの	方位	JMTR 南西	JMTR北西		原 平成19年
四十百	取入加 (mSv)	0.0001	0.0000	0.0001	
排気筒からの	距離 (km)	0.5	1.6		三三二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二二
排気筒	方位	型車	超極		サイクル工研観測 平成19年4月1日~ 平成20年3月31日
中世	はNSv)	0.0000	0.0002	0.0002	サイク 平成19 ⁴ 平成2
からの	距離 (km)	0.3	8.0		H− 1H
排気筒からの	方位	NUCEF 南西	JRR-3 南西		原科研觀測 平成19年4月1日~ 平成20年3月31日
1 5十百	は入り目 (mSv)	0.0001	0000	0.0001	原利 平成19 ⁴ 平成2
		外部被ばくによる実効線量	内部被ぼくによる預託実効線量	福	 ※ 徐
\angle		周辺監視区域の	がにおける実効線量		溪

(注)原電・多考として[]内に昭和56年4月からから昭和57年3月までの気象条件による評価結果を示す。

燃料 3 社共同排水溝 平成19年4月1日~ 平成20年3月31日 第一化学 临 平成19年4月1日~ 平成20年3月31日 発 11 無 1 怹 ₩ 压 平成19年4月1日~ 平成20年3月31日 画 Ħ 発 典 1 洗 蓆 平成19年4月1日~ 平成20年3月31日 構大 六 # 子力機 \bowtie 型 原子力機構大洗 洗薄原南 平成19年4月1日~ 平成20年3月31日 子力機構大 水 地区 対 原北 弘 原子力機構サイクル工研 平成19年4月1日~ 平成20年3月31日 摇 団 以 빧 第 8 筆 平成19年4月1日~ 平成20年3月31日 原子力機構原科研 原科研第1, 第2, 排 水 評価対象施設名 評価対象期間 事業所名

3-2 放射性液体廃棄物による実効線量

	H101/0 1-07%/1	H 10 f (0 + 07%) I	H 101/ 0 1-02/0/ L	H 10 11 0 11 0 11 11 11 11 11 11 11 11 11	1 12420 T- 0 73 01 H	H 10 C/ O -1-07%/ L	H 10 t/ 0 +02% L
	最大値 (mSv)	最大値 (mSv)	最大值 (mSv)	最大値 (mSv)	最大値 (mSv)	最大値 (mSv)	最大值 (mSv)
内部被ばくによる 預託 実効線 量	0.0006	0.0000	0.0002	0.0000	0.0076	0.0000	0.0089
外部被ばくによる 実 効 線 量		0.0000					
1 11	900000	0.0000	0.0002	0.0000	0.0076	0.0000	0.0089

資料1 実効線量算出に用いた測定結果

1-1 農畜産物中の放射能測定結果

1-1-1 牛乳 (原乳) 中の放射性核種分析結果 (%Sr, 137Cs)

測定者	採取地点	採取月日	分析値((Bq/L)
側 化 有	探 収 地 点	探 収 万 口	⁹⁰ Sr	¹³⁷ Cs
	那珂市豊喰	4.26	*	*
	, 까 게 비 효 哏 -	10.24	*	*
県	大洗町磯浜	4.25	*	*
万	八机闸城供	10.22	*	*
	水戸市見川	4.24	*	*
	水 戸 巾 晃 川	10.22	*	*
原子力機構	ひたちなか市部田野	4.12	*	*
サイクル工研	0.75 らなが山 中田利	10.11	*	*
原子力機構) 鉾 田 市 子 生	4. 3	*	*
大洗洗		10. 3	*	*

1-1-2 野菜中の放射性核種分析結果 (90Sr, 131I, 137Cs)

		在分列和水(51, 1,	(5)	公 托总	i (Bq/kg·	生)
測定者	種類	採取地点	採取月日			
				⁹⁰ Sr	$^{131}{ m I}$	¹³⁷ Cs
	キャベツ	 東海村舟石川	5. 1	0.10	*	*
	ホウレン草	宋 傳 竹 加 乜 加	11.28	0.13	*	*
	キャベツ	東海村白方	5.25	0.11	*	*
	ホウレン草		11.28	0.08	*	*
県	キャベツ	大洗町成田	5.15	*	*	*
	ホウレン草		12.11	*	*	*
	キャベツ	那一一一一一一一一	5.25	0.09	*	*
	ホウレン草	那 珂 市 横 堀	11.22	0.37	*	*
	キャベツ	水戸市石川	5.15	0.11	*	*
	ホウレン草		12.14	0.06	*	*
原子力機構	ホウレン草	声 海 廿 須 和 問	4. 2	0.040	*	*
原科研	"	東海村須和間	10.25	0.069	*	*
原子力機構	ホウレン草	カキナカムナドが	4. 4	×	*	*
サイクル 工 研	"	ひたちなか市長砂	10.17	*	*	*
原子力機構	ホウレン草	△	4.20	0.15	*	*
大 洗	ハクサイ	鉾 田 市 田 崎	11.20	0.040	*	*
原電	ホウレン草		4. 6	0.076	*	*
原電	ハクサイ	日 立 市 留	12. 5	0.15	*	*

1-1-3 精米中の放射性核種分析結果 (90Sr, ¹³⁷Cs, ¹⁴C)

測定者	採取地点	採取月日	分	析 値 (Bq/	(kg·生)
測 定 者	採取地点	1本収力口	⁹⁰ Sr	¹³⁷ Cs	¹⁴ C
	那 珂 市 横 堀	11.22	*	*	98
県	東海村舟石川	11.28	*	*	95
	水戸市石川	12.14	*	*	97
原子力機構原科研	東海村須和間	10. 4	*	*	
原子力機構サイクル工研	ひたちなか市長砂	10.17	*	*	95
原 子 力 機 構大 洗	鉾 田 市 田 崎	10.18	*	*	
原電	日 立 市 留	10.18	*	*	

1-2 陸水中の放射能測定結果

1-2-1 飲料水(水道水)中の放射性核種分析結果(3H)

測定者	採 水 地 点	採水月日	核種	分析值 (Bq/L)
県	水戸原子力事務所	4.26	³ H	*
	(那 珂 川)	10.24	³ H	*
原子力機構原科研	東海村須和間	4. 5	³ H	*
	(久慈川)	10. 2	³ H	*
原子力機構	ひたちなか市長砂	4.4	³ H	*
サイクル工研	(那 珂 川)	10. 4	$^3\mathrm{H}$	*
原子力機構	大洗町北松川	4.12	³ H	*
大洗洗	(地下水)	10.23	3H	*
原電	日 立 市 留	4. 6	³ H	*
次	(久慈川)	10. 5	³ H	*
第一化学	東海村村松	4.27	3H	*
第 一 化 学 	(井戸水)	10.17	³ H	*

1-3 海産物中の放射性核種分析結果

1-3-1 魚類 (54Mn他)

測	话 华石	如 仕	採取	採取			分	析	値 (B	q/kg·	生)		
定者	種 類	部 位	海域	月日	⁵⁴ Mn	⁶⁰ Co	90Sr	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
	シラス	全部	久慈沖	6. 6	×	*	*	*	×	*	*	*	*
	"	"	"	9.28	×	×	*	*	×	*	*	×	×
	"	"	大洗沖	6.11	×	×	0.052	*	×	*	*	*	×
県	"	"	"	10. 9	*	×	*	×	*	*	*	×	*
宗	ヒラメ	可食部	久慈沖	6. 6	*	*	*	*	*	*	*	*	*
	"	"	"	12.12	*	*	*	*	*	*	*	*	*
	"	11	大洗沖	6.27	×	*	*	*	×	*	*	*	*
	"	"	"	12. 7	*	*	*	*	*	*	*	*	*
原子	シラス	全部	東海沖	5. 9	*	*	*	*	*	*	*	*	*
原子力機構原科研	"	11	"	11. 5	×	*	*	*	×	*	*	*	*
構原	カレイ	可食部	"	5.17	*	*	*	*	*	*	*	*	*
朴 研	"	"	"	11.27	*	*	*	*	*	*	*	*	*
原	シラス	全部	東海沖	4.11	×	*	*	*	×	*	*	*	*
子	"	"	"	7. 5	×	×	*	*	×	*	*	*	×
力機	"	"	磯崎沖	4.11	×	×	*	*	×	*	*	*	×
構サ	"	"	"	7. 5	×	*	*	*	*	*	*	*	×
イ	カレイ	可食部	東海沖	4.26	×	×	*	*	×	*	*	*	×
クル	"	"	"	7.23	×	×	*	*	×	*	*	*	×
工	"	"	磯崎沖	5. 8	×	*	*	*	*	*	*	*	×
研	"	"	"	9.13	×	*	*	*	*	*	*	*	×
原	シラス	全部	大洗沖	5.14	×	*	*	*	*	*	*	*	
原子力機構大洗	"	"	"	10.10	×	*	*	*	*	*	*	*	
構大	ヒラメ	可食部	"	6.27	*	*	*	*	*	*	*	*	
洗	"	"	"	12.20	*	*	*	*	*	*	*	*	

1-3-2 貝類 (54Mn他)

測定	種類	部 位	採取	採取			分	析	値(Be	q/kg·	生)		
走者	性 類	部 位	海 域	月日	⁵⁴ Mn	⁶⁰ Co	⁹⁰ Sr	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
	ハマグリ	可食部	大 洗	5.16	\times	*	*	*	*	\times	*	*	0.0037
	"	"	"	8. 1	×	*	*	*	*	*	*	*	0.0029
	(注1) リ	"	"	11. 8	×	*	*	*	*	×	×	*	0.0029
県	"	"	"	12.18	×	*	*	*	*	×	*	*	0.0026
宗 	アワビ	"	"	7.10	×	*	*	*	*	×	*	*	0.0036
	"	"	"	9.27	×	*	*	*	*	×	*	*	0.0027
	"	"	久慈浜	6.20	*	*	*	*	*	*	*	*	0.0056
	"	"	"	10. 6	×	*	*	*	*	×	*	*	0.0038
	(注1) ハマグリ	可食部	大 洗	5.16	*	*	*	*	*	*	*	*	×
原	"	"	"	11. 8	×	*	*	*	*	*	*	*	×
子力	^(注2) ウバ貝	"	磯崎	5.15	×	×	×	×	×	×	×	*	×
原子力機構サイクル工	"	"	"	8. 9	*	*	*	*	*	*	*	*	×
リイカ	"	"	"	11. 7	*	*	*	*	*	×	×	*	×
ルエ	"	"	"	1.24	×	×	×	×	×	×	×	*	×
研	アワビ	"	"	7.26	×	×	×	×	×	×	×	*	0.0028
	"	"	久慈浜	8. 7	×	*	*	*	*	*	*	*	0.0026
原	ハマグリ	可食部	大 洗	5.16	*	*	*	*	*	*	*	*	
原子力機構大洗	"	"	"	11. 8	*	*	*	*	*	*	*	*	
	ウバ貝	11	"	5.16	×	*	*	*	*	*	*	*	
洗	"	11	11	11. 8	*	*	*	*	*	*	*	×	

⁽注1) 久慈浜のハマグリが採取不能のため、大洗のハマグリを調査対象とした。 (注2) 久慈浜の貝類は採取不能のため、磯崎のウバ貝を調査対象とした。

1-3-3 海藻類 (54Mn他)

測	括 粔	如 仕	採取	採取			分	析	値(B	q/kg·	生)		
定者	種 類	部 位	海域	月日	⁵⁴ Mn	⁶⁰ Co	⁹⁰ Sr	⁹⁵ Zr	⁹⁵ Nb	¹⁰⁶ Ru	¹³⁷ Cs	¹⁴⁴ Ce	Pu
	アラメ	可食部	久慈浜	6.12	*	*	0.054	*	*	*	*	*	0.0021
	"	"	"	6.19	*	×	×	*	*	*	*	×	0.0020
	ワカメ	"	"	6.12	×	×	×	×	*	*	*	×	×
県	"	"	"	6.19	*	*	*	\times	*	*	*	*	*
宗 	アラメ	"	大 洗	5.14	×	×	×	×	*	*	*	×	×
	"	"	"	10.10	×	×	×	×	*	*	*	×	0.0033
	ヒジキ	"	"	5.14	×	×	0.051	×	*	*	*	×	×
	"	"	"	10.10	×	×	×	\times	*	*	*	*	×
	アラメ	可食部	久慈浜	4. 5	×	×	×	×	*	*	*	×	×
原	"	"	"	7. 3	×	×	×	×	*	*	*	×	0.0032
子	ワカメ	"	"	5.22	×	×	×	×	×	×	×	×	×
原子力機構サイクル工	"	"	"	7.25	×	×	×	×	*	*	*	×	×
リイカ	アラメ	"	磯崎	4. 5	×	×	×	×	*	*	*	×	×
ルエ	"	"	"	7. 9	×	*	×	\times	*	*	*	*	0.0023
研	"	"	"	10.10	×	×	×	\times	*	*	*	×	0.0036
	"	"	"	1.10	×	×	×	×	*	*	*	×	0.0025
原	アラメ	可食部	大 洗	5.14	*	*	×	\times	*	*	*	*	
原子力機	"	"	"	10.10	×	×	×	\times	*	*	*	×	
横大洗	ヒジキ	"	"	5.14	*	×	×	*	*	*	*	×	
洗	"	"	"	10.10	*	×	×	*	*	*	*	×	
	アラメ	可食部	久慈浜	4. 4	*	*	×	*	*	*	*	*	
原	"	"	"	7. 5	*	×	×	*	×	*	*	×	
電	ワカメ	"	"	4. 4	*	*	×	*	*	*	*	*	
	"	"	"	7. 5	*	×	×	×	*	*	*	×	

1-4 放出源における測定結果

測定結果は、第1~第4四半期の短期的変動調査結果参照

資料2 実効線量算出に用いた測定結果の集計結果

2-1 積算線量

区分	地	X	名	測定者	測 定 地 点	測 定 値 (mGy)
					東海村原子力科学館	0.30
					東海中学校	0.26
					舟石川小学校	0.32
					那珂市第一中学校	0.27
				県	∅ 額田小学校	0.34
					√ 第二中学校	0.26
					// 本米崎小学校	0.32
					勿 签松運動公園	0.29
行					// 瓜連小学校	0.25
11					東海村新川下流	0.34 (0.35)
	東			原	〃 宿	0.35 (0.34)
				子	〃 阿漕ヶ浦南西	0.22
				力	〃 阿漕ヶ浦西	0.33
		市 海	파 □	機構	<i>n</i> 白方	0.34
政		東海	地区	原	〃 原電グランド北西	0.35 (0.36)
以				科	〃 川根	0.34
				研	〃 須和間	0.32 (0.33)
					〃 亀下	0.42
				原サ	東海村照沼公民館	0.38
				子イ	// 川根公民館	0.39 (0.40)
 				カカ、	勿須和間公民館	0.36
区				ルルー	外宿公民館	0.38
				機工	// 中丸小学校	0.32 (0.33)
				構研	η 合同庁舎	0.42 (0.43)
				原	東海村原電グランド	0.36
	海			電電	〃 豊岡	0.42
1				电	〃 二軒茶屋	0.32
域					(平 均)	0.33
					日立市日立商業高等学校	0.30
				県	// 日立第二高等学校	0.30
				坏	大久保小学校	0.28
		日 立	掛 区		常陸太田市峰山中学校	0.36
		П 1/-	地	原	日立市留	0.31
				電電	〃 東小沢小学校	0.30
				电		0.24
					(平 均)	0.30

区分	地	区 名	測定者	測 定 地 点	測 定 値 (mGy)		
				ひたちなか市勝田中央	0.36		
			,,,	/ 漁業無線局	0.28		
			県	ク 阿字ヶ浦中学校	0.29		
	東			<i>/</i> 那珂湊総合支所	0.39		
			原サ ひたちなか市長砂公民館		0.34		
		ひたちなか地区	子イ	足崎公民館	0.38		
			カ	/ 前渡小学校	0.38 (0.39)		
	海		カル	/ 高野小学校	0.37		
行			機工	/ 佐野小学校	0.32		
			構研	/ 市役所	0.36		
				(平 均)	0.35		
				大洗町大洗南中学校	0.36		
				〃 磯浜小学校	0.28		
政				鉾田市旭北小学校	0.30		
				// 旭南小学校	0.34		
			県	水戸市稲荷第一小学校	0.32		
				茨城町若宮	0.32		
区				// 沼前小学校	0.26		
	大	洗 地 区	洗 地 区	// 明光中学校	0.34		
				鉾田市舟木小学校	0.26		
			原	大洗町北松川	0.35		
域			原子力機	鉾田市上釜	0.26		
以			機	大洗町成田	0.26		
			構大洗	〃 夏海	0.36		
			洗	鉾田市下太田	0.24		
				(平 均)	0.30		
			県	水戸市第五中学校	0.28		
			原科研	水戸市 水戸気象台	0.27 (0.26)		
	比較	/ 1//*		対 照 地 点	サイクル 工 研	水戸市 (旧環境監視センター)	0.35
				(平 均)	0.30		
			原	周辺監視区域境界(MP-11)	0.35		
施			原子力機構原科研	〃 (プル研裏)	0.29		
設	原 子	瓦子力機構原科研		$/\!\!/$ (MP - 17)	0.30		
境		<i>/</i>	原科	'' (MP – 18)	0.31		
界			研研	'' (MS-2)	0.37		
				(平 均)	0.32		

区分	-	地区	名	測定者	測 定 地 点 <u>測</u> 定 値 (mGy)
				原サ	周辺監視区域境界 (S-1) 0.36
				子イカク	" (S-6) 0.29
	東		力機構	カ機クル工	" (S-8) 0.29
			77 19]	構研	ν (S −11) 0.31
施	海				(平 均) 0.31
	地				周辺監視区域境界 (MP-A) 0.36
	~			原	/ (MP-B) 0.39
設	X	原	電		/ (MP-C) 0.40
HX.				電	/ (MP-D) 0.34
					(平 均) 0.37
					周辺監視区域境界(敷地北) 0.27
境					(正門) 0.25
				原子	〃 (敷地東) 0.26
				原子力機構大洗	/ (敷地南) 0.23
界	大	洗 ±	也区	構	〃 (敷地西) 0.28
				大	グ(排水監視施設) 0.25
					周辺監視区域境界(No.1) 0.28 (0.27)
					" (No.2) 0.25
					(平 均) 0.26

(注1) 測定値:年間積算

2-2 預託実効線量計算核種

(東海・大洗地区)

			核	種					
					$^3\mathrm{H}$	⁹⁰ Sr	¹³⁷ Cs	Pu	単 位
種	目		地区名						
牛		乳	東	海		*	*		Bq/L
		₹ L	大	洗		*	*		"
野		菜	東	海		0.11	*		Bq/kg·生
力		木	大	洗		0.068	*		"
精		米	東	海		*	*		"
作用		/K	大	洗		*	*		"
飲	料	水	東	海	*				Bq/L
以	17	八	大	洗	*				"
魚		類	東	海		*	*	*	Bq/kg·生
黒		炽	大	洗		0.042	*	*	"
貝		類	東	海		*	*	0.0027	"
		炽	大	洗		*	*	0.0031	"
海	藻	類	東	海		0.041	*	0.0023	"
一	朱	炽	大	洗		0.041	*	0.0023	"

(比較対照地点)

種	II.	核種地区名	³ H	⁹⁰ Sr	¹³⁷ Cs	Pu	単 位
牛	 乳	水戸		*	*		Bq/L
野	菜	"		0.085	*		Bq/kg·生
精	米	"		*	*		"
飲	料 水	"	×				Bq/L

2-3 放出源における放出量

2-3-1 放射性気体廃棄物

281 7 th.	+5 =n 5	+t 15	放出	量 (GBq)
測定者	施設名	核種	実 測 分	不検出分
	J R R −3	希ガス (⁴¹ Ar)	3.3×10^{-1}	7.4×10 ²
	J R R -4	"	7.8×10^{-1}	3.3×10
	NSRR	"	3.8	3.8×10
	燃料試験施設	希ガス(⁸⁵ Kr)	1.1×10 ²	4.0×10^{3}
	NUCEF	希ガス (¹³⁸ Xe)	1.1×10 ²	1.7×10 ³
	計		2.2×10 ²	6.5×10 ³
原子力機構 原子力機構 原科 研	J R R −2	$_3$ H	0	1.2×10
	J R R −3	"	1.4×10	3.6×10
	計		1.4×10	4.8×10
	NSRR	1311	0	8.3×10 ⁻⁴
	燃料試験施設	"	0	8.0×10^{-4}
	NUCEF	"	3.1×10^{-5}	1.4×10^{-3}
	計		3.1×10^{-5}	3.0×10^{-3}
	再処理施設	希ガス(⁸⁵ Kr)	8.6×10 ⁴	1.3×10 ⁴
	"	3H	9.8×10 ²	7.5×10
原子力機構サイクル工研	"	¹⁴ C	4.0	2.2×10 ²
	"	131 T	0	2.1×10^{-1}
	"	129 I	1.7×10^{-2}	1.9×10^{-1}
	JMTR	希ガス(⁴¹ Ar)	0	2.1 × 10 ³
	HTTR	希ガス(⁸⁸ Kr, ¹³³ Xe)	0	1.5×10^{3}
	計		0	3.6×10^{3}
	JMTR	$_3\mathrm{H}$	3.2	
原子力機構大洗洗	HTTR	"	0	1.5×10
	計		3.2	1.5×10
	HTTR	131∐	0	1.0×10^{-3}
	高速実験炉「常陽」	希ガス (41Ar, 88Kr, 133Xe)	0	1.6×10^{3}
	"	131 T	0	2.0×10^{-3}
	東海発電所 排気筒	⁶⁰ Co	0	2.1×10^{-3}
	東海発電所 排気筒	¹³⁷ Cs	0	1.6×10^{-3}
	東海発電所 その他排気口	⁶⁰ Co	0	2.6×10^{-3}
/	東海発電所 その他排気口	¹³⁷ Cs	0	2.0×10^{-3}
	東海第二発電所	希ガス	0	6.0×10 ³
	東海第二発電所	131 T	0	2.3×10^{-2}

2-3-2 放射性液体廃棄物

測定者		施	設	名		核種	放 出 量	(GBq)
例是有		旭	収	石		1久 1里	実 測 分	不 検 出 分
	第	1	排	水	溝	⁶⁰ Co	2.2×10^{-5}	1.6×10^{-4}
			11			³ H	1.4×10^{-2}	
			11			⁹⁰ S r	2.8×10^{-6}	
			11			¹³⁷ C s	2.1×10^{-4}	
原			"			²³² T h	4.6×10^{-5}	
			"			234 U	4.6×10^{-6}	
子	第	2	排	水	溝	3H	1.6×10 ²	3.4×10^{-1}
			11			14 C	0	2.8
力			11			⁶⁰ C o	1.4×10^{-3}	6.5×10^{-2}
,,			11			¹³⁷ C s	3.2×10^{-4}	5.7×10^{-2}
機			11			⁵¹ C r	3.8×10^{-4}	
1戌			11			⁸⁹ S r	6.5×10^{-6}	
1.21.			11			⁹⁰ S r	7.9×10^{-5}	
構	第	3	排	水	溝	⁶⁰ C o	0	1.1×10^{-4}
			11			3H	9.1×10^{-2}	
原			計			3H	1.6×10 ²	3.4×10^{-1}
			11			¹⁴ C	0	2.8
科			11			60 C o	1.4×10^{-3}	6.5×10^{-2}
			11			¹³⁷ C s	5.3×10 ⁻⁴	5.7×10^{-2}
研			11			⁵¹ C r	3.8×10^{-4}	
			11			⁸⁹ S r	6.5×10^{-6}	
			11			⁹⁰ S r	8.2×10^{-5}	
			11			²³² T h	4.6×10^{-5}	
			11			²³⁴ U	4.6×10^{-6}	
	再	処	理	施	設	³ H	7.3×10³	1.7×10^{-1}
サ原			"			⁸⁹ Sr	0	2.8×10^{-2}
イ子			11			⁹⁰ Sr	0	1.4×10^{-2}
ク 力 ル			11			⁹⁵ Zr	0	3.2×10^{-2}
工機			11			⁹⁵ Nb	0	2.3×10^{-2}
一 研構			11			¹⁰³ Ru	0	1.4×10^{-2}
-21 114			11			¹⁰⁶ Ru ⁻¹⁰⁶ Rh	0	4.1×10^{-1}

SHI 스 크스	+ /- ≅n. /-	拉 钰	放 出 量	(GBq)
測定者	施設名	核種	実 測 分	不 検 出 分
	再 処 理 施 設	¹²⁹ I	1.2×10 ⁻²	1.2×10 ⁻²
サ原	"	131 I	0	2.3×10 ⁻²
イ子	"	¹³⁴ Cs	0	1.4×10^{-2}
ク カ ル	"	¹³⁷ Cs	0	2.3×10 ⁻²
工機	"	¹⁴¹ Ce	0	2.8×10^{-2}
一 研構	"	¹⁴⁴ Ce ⁻¹⁴⁴ Pr	0	2.8×10^{-1}
771 113	"	Pu (α)	1.3×10^{-3}	4.4×10^{-5}
	北 地 区 排 水 溝	3H	1.7×10 ²	1.6×10^{-3}
原	"	⁶⁰ Co	0	2.6×10 ⁻²
原子力機構大洗	"	¹³⁷ Cs	0	2.4×10 ⁻²
横	"	⁹⁰ Sr	2.7×10^{-4}	0
洗洗	南 地 区 排 水 溝	⁶⁰ Co	0	1.9×10^{-4}
	"	¹³⁷ Cs	0	1.9×10 ⁻⁴
	東 海 発 電 所	³ H	1.0	
	"	⁶⁰ Co	0	2.0×10^{-2}
原	"	¹³⁷ Cs	0	1.9×10^{-2}
	"	¹⁵² Eu	0	1.0×10^{-1}
	"	¹⁵⁴ Eu	0	5.7×10^{-2}
	東海第二発電所	3H	5.8×10 ²	2.3×10^{-3}
	"	⁵¹ Cr	0	5.1×10^{-1}
	"	⁵⁴ Mn	0	7.0×10^{-2}
電	"	⁵⁸ Co	0	7.0×10^{-2}
	"	⁶⁰ Co	0	8.1×10 ⁻²
	"	³⁶ C1	2.2×10^{-4}	
第一	排 水 調 整 槽	3H	4.1×10	0
化学	"	14C	4.2×10	0

参考1 原子力機構再処理施設排水環境影響詳細調查結果

1. 調査目的

再処理施設低レベル廃液の海洋放出に伴う同海域における放射能水準の変動を詳細に把握するため、放出 口を中心とした一定海域について海水の放射性物質濃度の調査を行う。

2. 調査方法

放出口周辺, 東西 3 km, 南北10 kmの海域において表層30地点で採水し,全 β 放射能(30地点),トリチウム(30地点), ^{137}Cs (7 地点)について分析する。

本調査は、原則として毎月上旬に定期的に実施する他、排水中の全 β 放射能濃度が、6.11Bq/cm³ ^(注) (=6110Bq/L) を超えた場合に実施する。

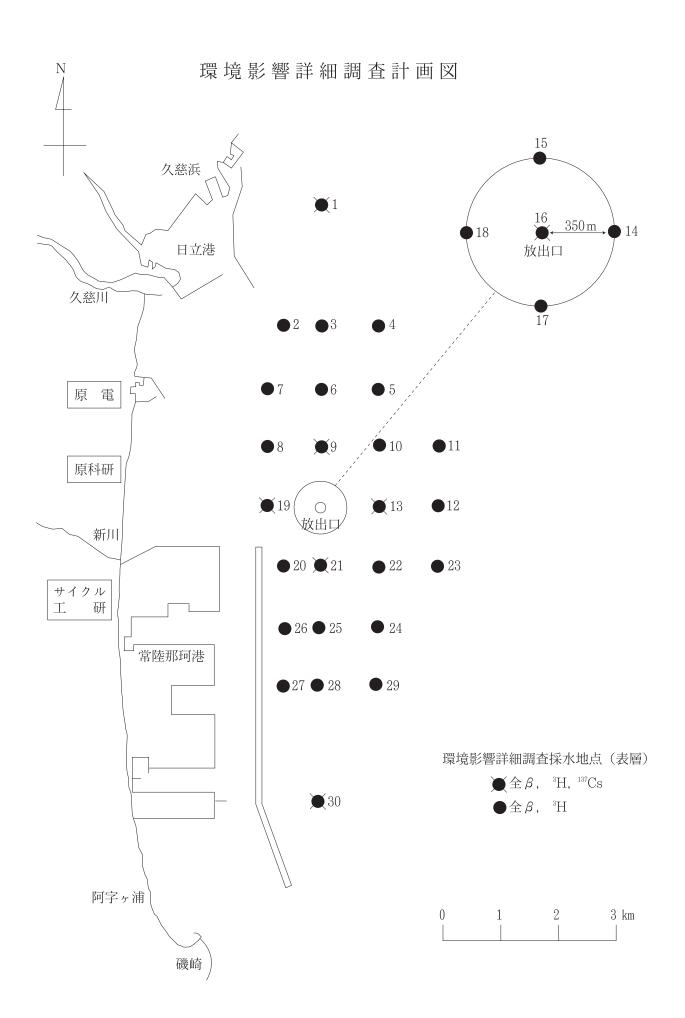
(注) 6.11Bq/cm³: 再処理排水濃度の一層の低減化を図ることが望ましいとの観点から、昭和53年6月に茨城県と当時の動力炉・核燃料開発事業団で確認した努力目標値。

3. 調査結果

当期の調査は、1月8日、2月8日及び3月4日に実施した。

その結果、上記海域の海水中放射性物質濃度の平均値は、全 β 放射能について検出限界値(0.04Bq/L)未満、トリチウムについて検出限界値(40Bq/L)未満、 137 Cs について検出限界値(0.004Bq/L)未満であった。

なお、放出排水の全 β 放射能濃度が、6.11Bq/cm³ (=6110Bq/L) を超えることはなかった。


(3) 採水地点別濃度 (3ケ月平均値)

採 水 地 点	全 β 放 射 能	トリチウム	¹³⁷ Cs
探 水 地 点	(Bq/L)	(Bq/L)	(Bq/L)
1	*	*	*
2	×	×	
3	×	×	
4	×	×	
5	*	*	
6	×	×	
7	*	×	
8	*	×	
9	×	×	×
10	*	×	
11	*	*	
12	×	×	
13	*	×	*
19	*	*	*
20	*	×	
21	*	*	*
22	*	*	
23	*	*	
24	*	*	
25	*	*	
26	*	*	
27	*	*	
28	*	*	
29	*	*	
30	*	*	*
放 出 点	*	*	*

注 1. 検出限界値:全 β 放射能 0.04 Bq/L トリチウム 40 Bq/L

¹³⁷Cs 0.004 Bq/L

2. 放出点:放出口周辺5地点(14~18)の平均値

主要施設運転状況 (平成19年度) 参考2

: 運転

施 設 名 4月	JRR-2	JRR-3 4.	再処理施設	JMTR	HTTR	高速実験炉 4/12	東海発電所	東海第二発電所	
5月		4/20 5/7	5/23		5/3 5/21	5/14		定期検査 5/18	4/21
6月		6/1 6/11							
7月		9/2	2.						
8月		8/20	7/30						
6月	残存施	9/14 9/24		施設定			五 繋		
10月	 残存施設の維持管理 	10/19		#####################################	施設定	施設定	押置		
11月		10/29 11/23	閣器		#####################################	###			
12月		12/3 12/13 12/26	型 一 一 一 点						
1月									
2月		施設定期検査							
3月								3/18 定期検査 ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★ ★	9/10

(注1) 原科研

JRR-2:平成8年12月19日に共同利用運転を終了し解体工事に着手。原子炉本体を密封するとともに周辺機器の撤去を終了し、平成16年4月より残存施設の 維持管理中。

JRR-3:平成19年12月13日 9:30 照射設備の制御装置故障に伴い原子炉を一時停止,同日19:00 制御装置を予備品と交換し再起動。 サイクル工研

(注2)

再処理施設:施設定期検査(平成19年7月30日から受検) 本施設定期検査期間中に,新潟県中越沖地震を踏まえた耐震性向上に係る工事を実施することから,検査終了時期は平成21年12月の予定。

原電 (注3)

東海発電所:平成10年3月31日 発電(運転)停止 平成13年12月4日 廃止措置着手

東海第二発電所:平成19年4月21日 原子炉起動

再処理施設処理状況(せん断処理について記載)

処	理	期	間	対象発電所名	炉型式 (PWR,BWR又はATR)	処理量 (T)	平均燃焼度 (MWD/T)	冷却日数 (年)
4月	平成9日~	•	9 日	(独)日本原子力研究開発機構 ふげん発電所	ATR (MOX燃料タイプB)	3.1	16,500	19.6~21.8
	Î	†				3.1		

別表 1 環境試料の核種濃度検出限界

通田	単位	He	14C	54Mn	28C0	0) (9)	$_{ m JS}_{ m 06}$	$^{95}\mathrm{Zr}$	qN ₂₆	¹⁰⁶ Ru	I _{1E1}	137Cs	144Ce	152Eu	154Eu	n	Pu
塵灰	mBq/m³			0.1		0.1		0.15	0.1	П		0.1	1				0.000015
上 率	Bq/m²			0.4		0.4	0.15	2:0	0.4	4		0.4	4				
十	Bq/L						0.04				0.2	0.4					
量 採	Bq/kg·生						0.04				0.4	0.4					
精米	Bq/kg·生		2				0.04					0.4					
平 礊	Bq/kg·乾			П		1				10		1	10				
陸水	Bq/L	20		0.008		0.008				0.03		0.004	0.03			0.1	
海	Bq/L	70		0.008		0.008	0.004	0.04	0.03	0.02		0.004	0.03				
海底土	Bq/kg·乾			1		1	0.4	2	6:0	9		0.4	9				0.04
海産物	Bq/kg·生			0.2		0.2	0.04	0.4	0.2	0.8		0.2	0.8				0.002
排近土水	Bq/kg·乾				П		0.2					г		ಬ	က	20	0.04

別表 2 排水中の全β・全γ検出限界

(1) 全β検出限界

測定項目	区 分	単 位	検出限界	備考
排水	淡水	Da /oma3	2×10^{-2}	再 処 理
排 水	灰	Bq/cm ³	2×10^{-4}	その他

(2) 全γ検出限界

排水溝名	単 位	検 出 限 界
原子力機構原科研(第 2)		2×10^{-2}
原子力機構サイクル工研(再 処 理)	Da Zama3	2×10^{-1}
原子力機構大洗	Bq/cm ³	6×10^{-2}
原 電(東海第二)		1×10 ⁻²

別表 3 排気の不検出分放出量算出方法

事業所名	施	設	名		核 種 等	算	出	方	法
	J R	R	_	2	³ H	$Q \times D L$			
	T D	D		0	希ガス	"			
	J R	R	_	3	3 H	"			
	J R	R	_	4	希ガス	"			
	N T (6	,	D	D	"	"			
原子力機構原科研	N S)	R	R	¹³¹ I	"			
		=4 FA	1/-	⇒几	希ガス	"			
	燃料	試 験	施	設	¹³¹ I	"			
	燃料	サイ	ク	ル	希ガス	"			
	安 全 工	学 研	究 施	設	¹³¹ I	"			
	(1	NUCE	F)		Рu	"			
	プルトニウ	カム燃料	第一,第	; =					
	第三開発於	施設,プ	ルトニウ	4	α(Pu)	"			
	廃 棄 物	処理開	引発 施	設					
					希ガス	"			
					³ H	11			
		主	非 気	筒	¹⁴ C	"			
	再			¹³¹ I	"				
					129 I	"			
	処	第1付属排気筒			希ガス	"			
原子力機構					³ H	"			
サイクルエ研	理			筒	¹⁴ C	"			
					¹³¹ I	"			
	施				¹²⁹ I	"			
				⁸⁵ K r	"				
	設				³ H	"			
		第 2 作	付属排気	筒	¹⁴ C	"			
					¹³¹ I	"			
					¹²⁹ I	"			
	高レベル加	5 自于小子 Phm .	哲研究长	: 章匹	希ガス	"			
		(CPF)		L FIX	³ H	"			
		(CI I')			¹³¹ I	"			

事業所名	施設名	核種等 第二出 方法
	J M T R	希ガス Q×DL
		希ガス /
	H T T R	131 I "
The state of the s		3H "
原子力機構大洗	照射燃料集合体試験施設	希ガス Q(ピンパンクチャー時)×DL
	(FMF)	131 I Q × D L
	古古中瓜后「光阳」	希ガス /
	高速実験炉「常陽」	131 I "
原子力機構那珂	J T - 60	3H (中性子発生量)
	東海発電所	⁶⁰ Co Q × D L
 	宋 海 宪 电 別	¹³⁷ Cs "
原電	東海第二発電所	希ガス /
	宋 伊 分 一 光 电 /	131 I "
住 友 鉱 山	技術センター	U "
	第 1 管 理 棟 (No.1)	" "
	" (No. 2)	" "
J C O	第 2 管 理 棟	" "
	第 4 管 理 棟	" "
	固体廃棄物処理棟	" "
	第 3 管 理 棟	" "
	転 換 工 場	" "
	成 形 工 場	" "
三 菱 原 燃	第 1 廃 棄 物 処 理 所	" "
	第2廃棄物処理所	" "
	燃料加工試験棟	" "
	 照 射 後 試 験 棟	希ガス 〃
	71 12 12 12 V	131 I "
	 化	" "
N D C	, , , , , , , , , , , , , , , , , , ,	β "
	ウ ラ ン 棟	U "
	燃料試験棟	" "
	材 料 試 験 棟	β "

	事業所名		施	設	名		核種等	算 出 方 法
		集	合	排	気	棟	3 H	Q(開放系での取扱い時間にお
第	一 化 学	'	百	19F	X	7宋	14 C	ける排気量)×DL+(実験動物
- 年	— 1L f	第	4 棟	排	気	棟	3 H	投与放射能量)×(呼吸中排泄割
		分	4 7年	17F	<i>X</i> (1米	¹⁴ C	合)
放	医研	那	珂 湊	第 1	研 究	棟	β	(使用済放射能量)
	区 切	那	珂 湊	第 2	研 究	棟	"	"
東	大	原	子		炉	棟	希ガス	(積算出力)×(放出割合)
米	入	ラ	イ	ナッ	<i>)</i>	棟	¹³ N + ¹⁵ O	"
東	北大	市	ツ	トラ	ラ ボ	棟	β	$Q \times DL$
日	本 核 燃	照	射後	試	験 施	設	希ガス	"
枝	管 センター	開		発		棟	α (Pu,U)	"
	目 セングー	新	分		析	棟	11	"
		加	工		工	場	U	"
原	燃工	廃	棄	物 奴	L 理	棟	"	"
		Н	T R 別	然 料 集	製造施	設	11	"
日	揮	R		Ι		棟	β	"
		開	発 試	験	第 I	棟	U	"
三	菱マテリアル	開	発 試	験	第 Ⅱ	棟	"	"
		開	発 試	験	第 Ⅳ	棟	β	"

注) Q:測定箇所における排気量

D L:検出限界

別表 4 排水の不検出分放出量算出方法

事 業 所 名		施	設	名		核 種 等	算 出 方 法
	第				1	⁶⁰ C o	$Q \times D L$
						³ H	"
西 乙 力 撥 捷 百 刹 矼	<i>55</i> 5				9	14 C	"
原子力機構原科研	第				2	⁶⁰ C o	"
						¹³⁷ C s	"
	第				3	⁶⁰ C o	"
	第				1	全 <i>β</i>	"
	第				2	Pu	"
	∏				<u> </u>	U	"
						³ H	"
				施		⁸⁹ S r	"
						⁹⁰ S r	"
					可以 可以	⁹⁵ Z r	"
			理			⁹⁵ N b	"
原子力機構						¹⁰³ R u	"
サイクル工研		. 処				¹⁰⁶ Ru - ¹⁰⁶ Rh	"
	再					¹²⁹ I	"
						¹³¹ I	"
						¹³⁴ C s	"
						¹³⁷ C s	"
						¹⁴⁴ C e - ¹⁴⁴ P r	"
						¹⁴¹ C e	"
						Pu	"
						全β	"
					区	³ H	"
	北		地			⁶⁰ C o	"
原子力機構大洗						¹³⁷ C s	"
	南		地		区	⁶⁰ C o	"
	177)		사만		<u> </u>	¹³⁷ C s	"
原子力機構那珂	貯		水		槽	³ H, 全β	"
					所	⁶⁰ C o	"
原電	東海	海	発	電		¹³⁷ C s	"
一		117	<i>)</i> L			¹⁵² E u	"
						¹⁵⁴ E u	"

事 業 所 名	施設名	核 種 等	算 出 方 法
		³ H	$Q \times D L$
		⁵⁴ M n	"
原電	市海安一欢雷市	⁵⁸ C o	"
原電	東海第二発電所	⁶⁰ C o	"
		⁸⁹ S r	"
		⁹⁰ S r	"
J C O	廃 水 ポ ン ド	U	"
J C O	第 小 小 ノ ト	Th, Pa	"
	排水ポンド	U	"
三 菱 原 燃	が水水が	Th, Pa	"
二	排 水 貯 槽	U	"
	(燃料加工試験棟)	Th, Pa	"
		⁵⁸ C o	"
N D C	 排 水 貯 槽	⁶⁰ C o	"
	THE AN ALL TE	¹³⁷ C s	"
		U	"
 原 燃 工	 排 水 ポ ン ド	. U	"
		Th, Pa	"
三菱マテリアル	 排 水 貯 槽	U	"
	7	Th, Pa	"
第一化学	調整權	³ H	"
7 16 子	1	¹⁴ C	"
住 友 鉱 山		U	"
住 友 鉱 山	屋外排水槽	Th, Pa	"

(注) Q:測定箇所における排水量 D L:検出限界

<用語・記号等の解説>

1 ×

測定データの全てが検出限界未満の濃度

2 -

欠測值

3 休止施設等

排気・排水口から放射性物質を含む排気又は排水の放出が全くない月は、最高濃度、平均濃度の欄は空欄("")に、放出量は"0"(ゼロ)。

- 4 / (スラント)
- (1) 測定対象外
- (2) 「その他検出された核種」が検出されない月及び3ヶ月平均濃度
- 5 測定結果の表記法

測定結果は原則として2桁とする。

放出源情報の測定結果は、原則として1位及び少数1位の2数字と10のベキ数とする。

- 6 最高濃度(最大. 最高值)
 - (1) 連続測定の場合
 - ア 空間線量 (MS, MP)

「最大」は1時間値の最高値

- イ 排気(希ガス等)
 - 1日値(24時間平均値)の最高濃度
- ウ 排水 (全γ)

1時間値の最高濃度

(2) 連続採取 定期的測定の場合

排気 $(全 \beta, ^3H, ^{131}I, U, Pu$ 等)、排水 $(全 \beta)$ は測定値の最高濃度

- 7 平均濃度(平均)
 - (1) 連続測定の場合
 - ア 空間線量 (MS, MP)

1時間値の単純平均値

イ 排気(希ガス等)

月平均値は1日値(24時間平均値)に排気量で重みを付けた加重平均値

ウ 排水(全γ)

1時間値の単純月間平均値

(2) 連続採取、定期的な測定の場合

排気 (全 β , 3 H, 131 I, U, Pu等), 排水 (全 β) は測定値に排気, 排水量で重みを付けた加重平均値

(3) バッチ測定の場合

排水(核種分析)の月平均値は測定値に排水量で重みを付けた加重平均値

- (4) 測定値の一部に検出限界未満がある場合,推定濃度(ある根拠によって推定した値又は検出限界値,ただし,排水(全γ)は"0")排気,排水量で重みを付けた加重平均値
- (5) 排気, 排水口から放射性物質を含む排気又は排水の放出が全くない月は, 最高濃度, 平均濃度の欄は空欄("")に, 放出量は"0"(ゼロ)。

8 3ヶ月平均濃度(平均)

- (1) 放出源情報については3ヶ月加重平均値とし(施設者に限る). その他については単純平均した値。
- (2) 検出限界未満 "×" は推定濃度又は検出限界(環境項目)として平均。ただし、希釈効果がある場合は、 希釈効果を考慮した値として平均し、希釈倍率を記載。

また、3ヶ月すべてが"×"の場合には3ヶ月平均値も"×"

- (3) 排気・排水が1ヶ月間放出が全くないときは、この月も値は0として計算。
- (4) 3ヶ月のうち1ヶ月でも欠測値"-"があった場合には平均値を求めず。

9 放出量

- (1) 放出量は測定された量(実測分)と検出限界未満で推定した量(不検出分)に分けて記載。
- (2) 不検出分

測定した値が検出限界未満の場合には「推定濃度」(ある根拠によって推定した値又は検出限界値)と 排気・排出量より求めた値

(3) "微": 不検出分として求めた値が次に定める場合

項	目	核 種 等	微と表示する限度
排気・排水		全β, Pu	0.004MBq/月未満
		上記以外	0.04MBq/月未満

(4) 放出量の3ヶ月総計

- ① 月毎の放出量の和を実測分. 不検出分別に記載
- ② 不検出分に"微"がある場合,"微"は加算しない。ただし、3ヶ月全てが"微"又は"微"と0のみの場合は"微"。

10 放射性核種分析

排気・排水又は環境試料中に含まれる放射性核種の種類と量(濃度)を調べること。

本報告では、ゲルマニウム半導体検出器を用いた機器分析によってセシウム-137・ヨウ素-131などを、放射化学分析によってストロンチウム-90・プルトニウムを、液体シンチレーション測定装置を用いた分析によってトリチウム・炭素-14などをそれぞれ測定している。

11 主要放出核種

原子力施設から放出される放射性核種は,施設の種類・使用方法によって決まるので,その核種を把握しておけば放出の概略や異常の有無が判断できるとされる放出量が多い核種。

12 その他検出された核種

主要放出核種以外の検出された核種 (検出された場合は報告することになっている)。 放出源における測定結果の記載については次のとおり。

- (1) 検出された月のみ記載。検出されない月又は3ヶ月平均濃度は"/"(スラント)を記載。
- (2) 測定値の一部に検出限界未満がある場合の平均濃度は、不検出分を0とした加重平均値。
- 13 検出限界(DL)

排気、排水の測定箇所における検出限界。

なお、最高濃度及び平均濃度はいずれも放出口における濃度に換算しているため、これらの値を下回る場合もある。

14 n e

測定結果が全て検出限界未満のため、線量評価せず。

15 平常の変動幅

- (1) 主 旨……平常時におけるモニタリングによって得られたデータは種々の要因で変動するが、その変動の幅を用いて、調査検討を要するデータを客観的に見出す。
- (2) 算出方法……過去のデータをもとにバックグランド放射能(自然放射能及び過去の核実験等によるもの)の平均値に標準偏差の 3 倍値(3σ)を加減して上限と下限を定める。なお、過去のデータが少なく、このような統計処理が適当でない場合は、最大値と最小値をもって上下限とする。

MP, MSの空間線量率については、同様に東海、大洗地区ごとに、平常の変動幅の上限を統計的に求めた後、評価の分かりやすさなどの点から、統一的に100nGy/時としている。

- (3) 調査検討を要するデータの選択と措置……平常の変動幅の上限を超えたものについて、試料採取、処理、分析、測定等原因の詳細な調査検討を行う。
- (4) 見直し……従来の傾向として、バックグラウンドレベルは経年的に変動が見られるので、平常の変動幅は適宜見なおしを行う。

<本報告書の解説>

環境放射線の監視の目的は、東海・大洗地区にある原子力施設周辺の環境保全を図るとともに、公衆の安全と健康を確保するため、原子力事業所の平常稼動時において、

(1) 周辺公衆の線量を推定評価し、線量限度を十分に下回っているかどうかを確認する。

(線量推定評価)

- (2) 環境における放射線と放射性物質の水準及び分布の長期的変動を把握する。 (長期的変動調査)
- (3) 放射性物質の予期しない放出による環境への影響を早期に把握する。 (短期的変動調査) ことを目的とし、「茨城県環境放射線監視計画」により、測定地点・頻度・測定者等が定められている。(表 1 参照)
 - なお、本計画は施設の増設や国のモニタリング指針等の改正に伴い、適宜見直しを行っている。 この監視計画に基づき県・国及び各原子力事業所が測定した結果を取りまとめたものが、本報告書である。 以下に、各測定項目の解説を示す。

I 短期的変動調査(3ヶ月毎)

1 環境における測定結果

原子力施設の敷地外での測定結果を示す。(なお、敷地内であっても周辺監視区域境界は「環境における測定結果」として取り扱う。以下同様。)

1-1 空間γ線量率測定結果

1-1-1 モニタリングステーション

固定放射線観測局で24時間連続測定している測定結果から、その月の1時間平均値及び最高値を示す。

※ 放射線測定装置と気象観測装置等が設置されているのがモニタリングステーション, 放射線測 定装置のみがモニタリングポスト。

1-1-2 モニタリングポスト

モニタリングステーションと同じ。

1-2 大気中放射能測定結果

1-2-1 大気塵埃中の放射性核種分析結果

集塵器で吸引した大気中の塵埃中に含まれる放射性物質の核種分析結果を示す。

1-2-2 降下塵中の放射性核種分析結果

大型水盤に降下した雨水や塵等に含まれる放射性物質の核種分析結果を示す。

1-3 農畜産物中の放射能測定結果

1-3-1 牛乳 (原乳) 中の放射性核種分析結果

乳牛から採乳した原乳中の131 Iの分析結果を示す。

1-4 海洋における放射能測定結果

1-4-1 海水中の放射性核種分析結果

海水に含まれる ³Hの分析結果を示す。

2 敷地内における測定結果

原子力施設の敷地内での測定結果を示す。以下同様。

- 2-1 空間γ線量率測定結果
- 2-1-1 モニタリングステーション

24時間連続測定している測定結果から、その月の1時間平均値及び最高値を示す。

2-1-2 モニタリングポスト

モニタリングステーションと同じ。

- 2-2 大気中放射能測定結果
- 2-2-1 大気塵埃中の放射性核種分析結果

吸塵器で吸引した大気中の塵埃に付着した放射性物質の核種分析結果を示す。

3 放出源における測定結果

原子力事業所の各施設から放出される排気・排水についての測定結果を示す。

- 3-1 排 気
- 3-1-1 排気中の放射性核種分析結果

各原子力事業所の主な施設から放出される排気中の主要放出核種の核種分析結果を示す。

3-1-1 / 排気中の放射性核種分析結果 (その他検出された核種)

主要放出核種以外で検出された核種について、その分析結果を示す。

3-1-2 排気中の全β放射能測定結果

各原子力事業所の施設から放出される排気中の全β測定結果を示す。

3-1-2 / 排気中の全β放射能測定結果

各原子力事業所の主要施設から放出される排気中の全β測定結果を示す。

3-1-3 排気中の全α放射能測定結果

各原子力事業所の施設から放出される排気中の全α測定結果を示す。

- 3-2 排 水
- 3-2-1 排水中の放射性核種分析結果

各原子力事業所の排水溝から放出される排水中の主要放出核種の核種分析結果を示す。

3-2-1 / 排水中の放射性核種分析結果

県及び水戸原子力事務所が測定した原子力事業所の主な排水溝から放出される排水中の核種分析 結果を示す。

3-2-1″排水中の放射性核種分析結果(その他検出された核種)

主要放出核種以外で検出された核種について、その分析結果を示す。

3-2-2 排水中の全β放射能測定結果

各原子力事業所の排水溝から放出される排水中の全β測定結果を示す。

3-2-2 / 排水中の全β放射能測定結果

県及び水戸原子力事務所が測定した主な排水溝から放出される排水中の全 β 放射能測定結果を示す。

3-2-3 再処理施設排水中の放射性核種分析結果

原子力機構サイクル工研再処理施設保安規定で定められている核種についての核種分析結果を 示す。

3-2-4 再処理施設排水中の全β放射能測定結果

原子力機構サイクル工研再処理排水の全β測定結果を示す。

3-2-5 排水中の全γ放射能連続測定結果

県が連続測定した主要排水溝の排水中の全ガンマ測定結果を示す。

Ⅱ 長期的変動調査結果(6ヶ月毎)

- 1 環境における測定結果
 - 1-1 空間γ線量率測定結果
 - 1-1-1 サーベイ

定点で定期的に測定した線量率の測定結果を示す。

1-1-2 積算線量

3ヶ月間連続して測定した線量の2回分(半年分)の測定結果を示す。

1-2 漁網表面吸収線量率の測定結果

船で一定期間曳航した漁網のガンマ及びベータの測定結果を示す。

1-3 大気中放射能測定結果

1-3-1 降下塵中の放射性核種分析結果

大型水盤中に落下した雨水や塵等に含まれる放射性物質の核種分析結果を示す。

1-4 陸土中の放射能測定結果

1-4-1 土壌中の放射性核種分析結果

畑土等の土壌中に含まれる放射性物質の核種分析結果を示す。

1-4-2 河底土中の放射性核種分析結果

河川の底土中に含まれる放射性物質の核種分析結果を示す。

1-4-3 海岸砂中の放射性核種分析結果

海岸砂中に含まれる放射性物質の核種分析結果を示す。

1-5 陸水中の放射能測定結果

1-5-1 河川水及び湖沼水中の放射性核種分析結果

河川水や湖沼水中に含まれる放射性物質の核種分析結果を示す。

1-5-2 飲料水中の放射性核種分析結果

水道水や井戸水中に含まれる放射性物質の核種分析結果を示す。

1-6 海洋における放射能測定結果

1-6-1 海水中の放射性核種分析結果

海水中に含まれる放射性物質の核種分析結果を示す。

1-6-2 海底土中の放射性核種分析結果

海底土中に含まれる放射性物質の核種分析結果を示す。

1-7 排水口近辺土砂中の放射性核種分析結果

各原子力事業所の排水口近辺の土砂中に含まれる主要放出核種の測定結果を示す。

- 2 敷地内における測定結果
 - 2-1 空間γ線量率測定結果
 - 2-1-1 積算線量

3ヶ月間連続して測定した線量の2回分(半年分)の測定結果を示す。

Ⅲ 線量の推定結果(1年間)

1 積算線量による外部被ばく実効線量

1年間の各地点の積算線量値を地域毎に区分し、年間の外部被ばく実効線量を示す。

2 環境試料中の放射性核種分析結果に基づく成人の預託実効線量

牛乳・葉菜・米・魚介類等の核種分析結果から、成人の預託実効線量を示す。

- 3 放出源情報に基づく実効線量
 - 3-1 放射性気体廃棄物による実効線量

原子力機構や原電等4事業所における主要施設から放出される年間の総排気量から外部被ばく実 効線量並びに内部被ばく預託実効線量を示す。

3-2 放射性液体廃棄物による実効線量

原子力機構や原電等5事業所における主要排水溝から放出される年間の総排水量から内部被ばく による預託実効線量並びに外部被ばくによる実効線量を示す。

表1 調査目的別測定項目及び頻度

	測定	項目		測気		度	対 象 核 種 等
1.	線量評価						
	 積	算 線	量	年	4	口	空間 γ
	原		乳	年	2	口	⁹⁰ Sr, ¹³¹ I, γ放射体
	葉		菜		"		⁹⁰ Sr, ¹³¹ I, γ放射体〈収穫時:ホウレン草, ハクサイ, キャベツ〉
	精		米	年	1	口	⁹⁰ Sr, ¹⁴ C(一部),γ放射体
	飲	料	水	年	2	口	³ H
	魚		類	2種	年 2	П	90Sr, Pu (一部),γ放射体〈収穫時:シラス及びヒラメ, カレイ, イシモチ, チダイ, スズキ〉
	貝		類		"		⁹⁰ Sr, Pu (一部),γ放射体〈収穫時:アワビ,ハマグリ,コタマ貝,赤貝,ウバ貝〉
	海	藻	類		"		⁹⁰ Sr, Pu (一部),γ放射体〈収穫時:ヒジキ,ワカメ,アラメ〉
	排		気	連	j	続	主要放出核種(施設者)
	排		水		"		主要放出核種 (施設者)
2.	短期的変	動調査					
	空間線量	量率(ステー	ション)	連	;	続	空間 γ
	空間線量	量率(ポン	スト)		"		空間 γ
	塵		埃	連続	·年4	口	Pu (一部施設者), γ放射体 (施設者)
	降	下	塵	毎		月	⁹⁰ Sr (県), γ放射体
	原		乳	年	4	口	131 [
	海		水		"		³ H, 〈水温, 塩素量〉
	排		気	連	;	続	放出核種 (施設者),全 β (施設者),全 α (施設者)
	排		水	連続	・毎	月	放出核種·全 β (施設者, 県, 水戸事務所), 全 γ (県)
3.	長期的変	動調査					
	空間線量	量率(サー	ベイ)	年	2	口	空間γ (県, 水戸事務所, 施設者)
	積 第	草 線	量	年	4	口	空間 γ
	降	下	塵	毎		月	⁹⁰ Sr (県), γ放射体
	土		壌	年	2	口	γ 放射体
	河	底	土		"		γ 放射体 (施設者)
	海	岸	砂		"		γ 放射体
	河	Ш	水		"		³ H, γ放射体(県, 水戸事務所, 施設者)
	湖	沼	水		"		³ H, γ放射体 (施設者)
	飲	料	水		"		γ放射体 (施設者), ³H (第一化学), U (JCO, 三菱原燃,原燃工)
	海		水		"		⁹⁰ Sr, γ放射体
	海	底	土		"		⁹⁰ Sr, γ放射体, 一部Pu
	排水口	1近辺:	上砂		"		主要放出核種
	漁		網		"		β 線、 γ 線〈共にサーベイメーター表示〉(施設者)

- ※1. γ放射体: ⁵⁴Mn, ⁶⁰Co, ⁹⁵Zr, ⁹⁵Nb, ¹⁰⁶Ru, ¹³⁷Cs, ¹⁴⁴Ce等
 2. 海底土中のPu測定は、河口及び一部排水口付近の海域のみ。
 3. Pu: ^{239,240}Pu

 - 4. 対象核種等欄の():分担を示し、表示なしは県、施設者による。

《参考資料》

1. 線量評価について

1 監視計画における位置づけ

1 監視の目的(抜粋)

東海・大洗地区にある原子力施設周辺の環境保全を図るとともに、公衆の安全と健康を確保するため、 原子力事業所の平常稼働時において、

- (1) 周辺公衆の線量を推定評価し、線量限度を十分に下回っているかどうかを確認する。
- 2 計画の方針
- (1) 環境放射線の監視は、次に掲げるところにより行う。
 - ア 空間線量測定結果及び環境試料中の核種分析結果に基づき,周辺公衆の線量を推定評価する。
- (2) 排気及び排水の監視は、次に掲げるところにより行う。
 - ア 放出量と線量評価モデルを用い、線量を推定する。
- 3 調査計画(抜粋)

監視の目的、計画の方針に沿って、測定・分析の計画を以下のとおり定める。

測定項目 測定頻度 妆 象 核 種 1. 線量評価 $\overline{\mathfrak{g}}$ 算線量 $\overline{\mathfrak{g}}$ 年 4 回 $\overline{\mathfrak{g}}$ 空間 γ ⁹⁰ S r, ¹³¹I, γ放射体 牛 乳 年 2 回 野 菜 ⁹⁰Sr, ¹³¹I, γ放射体〔収穫時:ホウレン草, ハクサイ, キャベツ〕 精 米 年 1 回 ⁹⁰ S r, γ 放射体 水 年 2 回 飲 料 3 H ⁹⁰ S r, γ 放射体, P u {収穫時:シラス及びヒラメ, カレイ,イシモチ,` 類 2 種年 2 回 魚 チダイ, スズキ 貝 類 ⁹⁰Sr,γ放射体, Pu 〔収穫時:アワビ,ハマグリ,コタマ貝,赤貝〕 ⁹⁰Sr,γ放射体,Pu 〔収穫時:ヒジキ,ワカメ,アラメ,カジメ〕 海 藻 類 | 続 主要放出核種(施設者) 排 気|連 主要放出核種(施設者) 排 水

表 1 調査目的・測定項目・頻度

注 牛乳の 131 I については, 年 4 回の測定である。

4 評価方法

各調査機関から報告された資料に基づいて、次の手順で評価を行う。

(1) 線量の評価

周辺公衆の線量を推定し、線量限度を十分に下回っているかどうかを確認する。

ア 評価の頻度

原則として年1回

- イ 推定の方法
- (ア) 積算線量測定結果に基づく外部被ばくによる実効線量の推計
 - a 対象項目

積算線量

- b 各測定点毎に四半期毎の値を積算し、年間線量を求め、その結果から対象地区(別表 1)別に平均した年間線量を求め当該地区の実効線量を算出する。
- (イ) 環境試料中の放射性核種分析結果に基づく,内部被ばくによる預託実効線量の推定。
 - a 対象項目

牛乳・野菜・精米・飲料水・魚類・貝類・海藻類

b 対象核種

別表2のとおり

- c 四半期毎に報告された環境試料の放射性核種分析結果の年間平均値を求め、当該試料中の放射性 物質濃度とする。
- d 線量計算方式は、線量算出要領による他「環境放射線モニタリングに関する指針(平成13年3月 原子力安全委員会)」による。
- e 東海地区と大洗地区別に線量を求める。
- (ウ) 放出源情報に基づく内部、外部被ばくによる実効線量の推定。
 - a 対象施設及び核種

別表3のとおり

- b 施設者は、各々の排気、排水について年間に得られた情報に基づいて、内部、外部被ばくによる 実効線量推定を行い報告する。
- c 推定計算式は,各施設の計算式による。
- (エ) 線量の推定

以上の結果に基づき線量を総合的に推定する。

別表 1 積算線量による線量評価地域区分

	地	X	名		市 町 村 名 ・ 事 業 所 名
4=:			東 海 地	X	東海村,那珂市
行政	東	海	日 立 地	区	日立市,常陸太田市
			ひたちなか	地区	ひたちなか市
	大	洗	地	区	大洗町,鉾田市,水戸市(旧常澄村),茨城町
域	比	較対	対 照 地	点	水戸市
施設	東	海	地	区	原子力機構原科研,原子力機構サイクル工研,原電
境界	大	洗	地	区	原子力機構大洗

別表 2 環境試料中の放射性核種分析結果に基づく線量推定のための主な核種

	項	目	対 象 核 種
牛		乳	⁹⁰ S r, ¹³¹ I, γ放射体 ^(注)
野		菜	⁹⁰ S r, ¹³¹ I, γ放射体
精		米	⁹⁰ S r, γ 放射体
飲	料	水	⁸ H
魚		類	⁹⁰ S r, γ 放射体, P u
貝		類	⁹⁰ Sr, γ放射体, Pu
海	藻	類	⁹⁰ S r, γ 放射体, P u

(注) γ放射体:⁵⁴Mn, ⁶⁰Co, ⁹⁵Zr, ⁹⁵Nb, ¹⁰⁶Ru, ¹³⁷Cs, ¹⁴⁴Ce等

別表3 放出源情報に基づく線量推定のための主な核種

事業所名	施設名	排 気	排水
	J R R — 2	³ H	
	J R R - 3	希ガス (⁴¹ Ar), ³ H	
	J R R - 4	希ガス (⁴¹ Ar), ³ H	
原子力機構原子 科研	N S R R	希ガス (⁴¹ Ar, ¹³³ Xe), ¹³¹ I	
	第 1 排 水 溝		⁶⁰ C o
	第 2 排 水 溝		³ H, ¹⁴ C, ⁶⁰ Co, ¹³⁷ Cs
	第 3 排 水 溝		⁶⁰ C o
原子力機構サイクル工研	再処理施設	希ガス (⁸⁵ Kr), ³ H, ¹⁴ C, ¹²⁹ I, ¹³¹ I	³ H, ⁹⁰ Sr, ⁹⁵ Zr, ⁹⁵ Nb, ¹⁰⁶ Ru, ¹²⁹ I, ¹³¹ I, ¹³⁷ Cs, ¹⁴⁴ Ce, Pu
	J M T R	希ガス (⁴¹ A r), ¹³¹ I	
原子力機構	原子力機構大洗 北地区排水溝		³ H, ⁶⁰ Co, ¹³⁷ Cs
大洗洗	高速実験炉「常陽」	希ガス (⁴¹ Ar, ⁸⁵ Kr, ¹³³ Xe), ¹³¹ I	
	原子力機構大洗 南地区排水溝		⁶⁰ C o, ¹³⁷ C s
E F	東海発電所	⁶⁰ Co, ¹³⁷ Cs	⁶⁰ C o, ¹³⁷ C s, ¹⁵² Eu, ¹⁵⁴ Eu
原電	東海第二発電所	希ガス (⁸⁵ Kr, ¹³³ Xe), ¹³¹ I	³ H, ⁵¹ Cr, ⁵⁴ Mn, ⁵⁸ Co, ⁶⁰ Co
第一化学	燃料3社		³ H, ¹⁴ C

2 線 量

(1) 線 量

線量とは、放射線を人体に受けた場合、その吸収線量レベルでの生物学的影響の程度を考慮にいれて、 人が受けた放射線の量をシーベルト (Sv)という単位で表したものである。

放射線の種類が異なっても、人体への影響が同じであるならば、放射線の量は、同一のシーベルト (Sv) で表わせる。

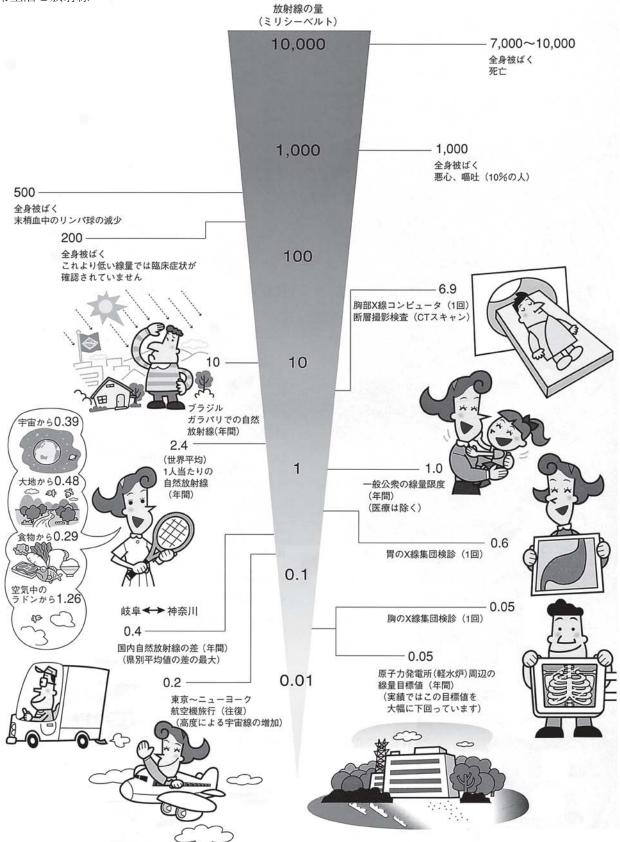
吸収線量(D)と線量(H)の関係は、線質係数をQ、修正係数をNとすれば次のとおりである。

$$H = D \times Q \times N$$

(2) 実効線量

実効線量とは、各臓器によって異なる影響を全身に対して評価できるような量として定義されている。

実効線量= $\sum_{T}\omega_{T}H_{T}$ ω_{T} :組織・臓器Tの組織荷重係数


H_T :組織・臓器Tにおける等価線量

(3) 預託実効線量

放射性物質を体内に取り込んだ時から50年間の1つの臓器の総線量を預託線量という。

また,臓器の預託線量に,その臓器に適用される荷重係数を乗じ,すべての臓器について合計したもの を預託実効線量という。

内部被ばくに関しては、線量限度と比較するのは、ある放射性核種に起因する1年間に摂取した放射性 核種による預託線量と決められている。

- (注1) 本図中の数値は実効線量当量または実効線量で記載。
- (注2) 自然放射線の量については、呼吸によるラドンの効果を含めた場合の値。

原子力2005 経済産業省資源エネルギー庁編集 働日本原子力文化振興財団発行

3 放射線量測定結果に基づく線量

(1) 放出源情報に基づく線量

各評価対象施設とも国の安全審査に用いた線量計算モデルを用いて算出しているが、これらは概ね「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針」(平成13年3月原子力安全委員会)に基づいている。

(「環境放射能測定データ報告要領」参照)

(2) 環境試料測定結果に基づく線量

(「線量算出要領」参照)

参考

1) 国際放射線防護委員会の線量限度の勧告値^(注1)

(ICRP Publication 60)

					—————————————————————————————————————	h	告	値	(mSv)		
確率的 影響	実	効	線	里	(組織・臓器の等価 ての組織・臓器につ 1 年間につき				荷重係数)	を被ばくし 1 ^{(注1}	
確定的	等	価	線	量	眼の水晶体		1年間に	こつき		15	
影響	寸	ΊЩ	孙下	里	皮膚(任意の表面 1	cm²)	1年間に	つき		50	·

一般公衆の線量限度

- (注1) この限度は特定の期間の外部被ばくからの該当する線量と、同一期間内の摂取による50年預託線量(子供に対しては70歳まで)との合計に適用される。
- (注 2) 特殊な状況では、5年間にわたる平均が年あたり $1\,\mathrm{m\,S\,v}$ を超えなければ、単一年にこれよりも高い実効線量が許される。
- 2) 試験研究の用に供する原子炉等の設置,運転等に関する規則等の規定に基づき,線量限度等を定める件 (平成12年12月26日科学技術庁告示第15号により一部改訂)

						告	示	値	(mSv)	
実	効 線	量	限	度	1年間に	つき				1
眼のフ	水晶体の	等 価	線量『	艮度	1年間に	つき				15
皮膚	の等値	版 線	量限	度	1年間に	つき				50

- ※ 周辺監視区域外の線量限度
- 3) 核燃料物質の加工の事業に関する規制等の規定に基づき、線量限度等を定める件 (平成12年12月26日科学技術庁告示第18号により一部改訂)

	告 示 値	(mSv)
実 効 線 量 限 度	1年間につき	1
実 効 線 量 限 度	再処理は3ヶ月につき	0.25
眼の水晶体の等価線量限度	1年間につき	15
皮膚の等価線量限度	1年間につき	50

- ※ 周辺監視区域外の線量限度
- 4) 発電用軽水型原子炉施設周辺の線量目標値に関する指針について

(平成13年3月 原子力安全委員会)

	目	票 値	(μSv)	
実 効 線 量	量 限 度	1年間につき	5	(1)

- ※ 現実的と考えられる計算方法及びパラメータにより算出。
- ① 気体廃棄物については放射性希ガスからのガンマ線による外部被ばく及び放射性ヨウ素の体内摂取による内部被ばく。
- ② 液体廃棄物については、海産物を摂取するところによる内部被ばく。

2. 環境放射能測定データ報告要領(抜粋)

Ⅱ 放出源情報に基づく線量の報告

1. 評価対象施設

線量算出の対象とした施設名を記載する。

例 1 JRR-2, JRR-3, JRR-4, NSRR

例 2 高速実験炉「常陽」

例 3 第 1, 第 2, 第 3 排水溝

例 4 再処理施設

2. 評価対象期間

線量算出に用いた放出量の集計対象期間を記載する。

例 平成4年4月1日~平成5年3月31日

3. 実効線量

- (1) 放射性気体廃棄物による実効線量
 - ① 外部被ばくによる実効線量
 - ア 周辺監視区域外における実効線量の最大値

評価対象期間中の放射性希ガスの環境への放出量(検出限界未満の不検出分を含めるが「微」は含めない)により、評価対象施設の線量計算モデルを用い、周辺監視区域外における実効線量を算出し最大値を記載する。

イ 排気筒からの方位及び距離

周辺監視区域外において実効線量が最大となる地点を,排気筒が複数ある場合には基準となる排気 筒を明示のうえ,排気筒からの方位及び距離で記載する。

例 JRR-2 南々西 0.6 km

② 内部被ばくによる預託実効線量

評価対象期間中の放射性核種の環境への放出量(3.(1)①アに準拠)により、評価対象施設の線量計算モデルを用い、内部被ばくによる預託実効線量を算出し最大値を記載する。

排気筒からの方位及び距離は①イに準拠して記載する。

- (2) 放射性液体廃棄物による実効線量
 - ① 内部被ばくによる預託実効線量

評価対象期間中の放射性核種の環境への放出量(3.(1)①アに準拠)により、評価対象施設の線量計算モデルを用い、内部被ばくによる預託実効線量を算出し最大値を記載する。

② 外部被ばくによる実効線量(再処理施設のみ適用)

評価対象期間中の放射性核種の環境への放出量(3.(1)①アに準拠)により、評価対象施設の線量計算モデルを用い、外部被ばくによる実効線量を算出し最大値を記載する。

4. 必要に応じ算出すべき等価線量

原則として、甲状腺等の預託等価線量は平常時のモニタリングにおいては算定の必要性はないが、施設からの予期せぬ放出等により線量が相当に上昇する可能性があって算定の必要が生じた場合には、評価対象施設の線量計算モデルを用い、預託等価線量を算出し最大値を記載する。(様式は47pの参考資料に準ずる。)

5. その他

- (1) 線量の算出に用いた放出量を対象核種毎に実測分,不検出分別に記載する。
- (2) 線量は、小数第5位を四捨五入して記載する。
- (3) 排気筒からの距離は、小数第2位を四捨五入して記載する。
- (4) 線量の算出に用いた気象データ等の資料及び評価方法に関する説明を"考察"に記載する。

3. 線量算出要領(抜粋)

I 放出源情報に基づく線量

排気・排水とも各事業所が定める算出方法に基づく。

Ⅱ 環境試料測定結果に基づく線量

1. 実効線量

- 1) 外部被ばくによる実効線量
 - (1) 地区の設定

地区の設定は、監視計画「別表1 積算線量による線量評価地域区分」による。

(2) 実効線量

評価対象期間中の積算線量測定結果(宇宙線成分及び積算線量計の自己汚染の寄与を除く)から,各地点毎に四半期毎の値を積算し,年間線量を求め,それらを対象地区(別表 1)別に平均した年間線量として整理し,その結果から当該地区の実効線量を算出し,表 1 に記載する。なお,算出にあたっては,「環境放射線モニタリングに関する指針」(平成13年 3 月原子力安全委員会。以下「モニタリング指針」という。)に準じ,0.8(Sv/Gy)の換算値を使用する。

- 2) 内部被ばくによる預託実効線量
 - (1) 地区の設定

地区の設定は、那珂川を境界とし、以北を東海地区、以南を大洗地区とし、水戸は比較対象地点とする。

(2) 預託実効線量

評価対象期間中の環境試料中の放射性核種分析結果から、東海、大洗地区別に各種目毎の平均値を求め、下記3.内部被ばく線量計算モデル及び使用パラメータ又は「モニタリング指針」の線量の推定・評価法を用い、預託実効線量を算出し表-2に記載する。

2. 等価線量

原則として、甲状腺等の預託等価線量は平常時のモニタリングにおいては算定の必要性はないが、施設からの予期せぬ放出等により線量が相当に上昇する可能性があって算定の必要が生じた場合には、評価対象期間中の環境試料中の放射性核種分析結果から、東海、大洗地区別に各種目毎の平均値を求め、線量計算モデル等を用い、預託等価線量を算出し表-3に記載する。

3. 内部被ばく線量計算モデル及び使用パラメータ

(1) 計算モデル

核種ごとの内部被ばくによる預託実効線量の計算は次式による。

mSv = 〔預託実効線量係数 (mSv/Bq)〕 \times 〔核種の 1 日の摂取量 (Bq/H)〕 $\times 365(H/H)$

×〔摂取期間年間比〕

内部被ばくによる預託等価線量の計算は次式による。

mSv = 〔預託等価線量係数 (mSv/Bq)〕 \times 〔核種の 1 日の摂取量(Bq/H)〕

× 365 (日/年)×〔摂取期間年間比〕

(2) 使用パラメータ

ア 預託実効線量係数

表-4 (1 Bq を摂取した場合の成人の実効線量)のとおり。

イ 預託等価線量係数

表-5(1 Bq を摂取した場合の成人の預託等価線量)のとおり。

ウ 食品摂取モデル

表-6のとおり。

ェ 摂取期間年間比

各種目とも原則として「1」とする。

4. 核種分析結果の集計方法及び線量の表示方法

- (1) 報告対象外の核種が検出さたれ場合は、当該核種の預託実効線量の評価を行う。
- (2) 各種目毎の核種分析結果を地区ごとに単純平均する。ただし、検出限界未満は検出限界を用いる。
- (3) 核種分析結果がすべて検出限界未満の場合は、該当欄に"ne"(検出限界未満につき求められず)記載し、検出限界を用いて算出した場合の預託実効線量を別表に掲げる。
- (4) 線量はmSv の単位で、外部被ばくについては第4位を、内部被ばくについては少数第5位を四捨五入 して記載する。
- (5) 預託実効線量の合計を求める場合 "ne" は加算しない。ただし、すべてが "ne" の場合は "ne" と、 "ne" 及び "0.0000" の場合 "0.0000" と表示する。
- (6) 化学形等が不明の場合は、その核種のうち経口摂取について最大となる線量係数を使用する。

表-4 1 Bq を経口摂取した場合の成人の預託実効線量係数 *1

(mSv/Bq)

核種	預託実効線量係数
³ H	4.2×10^{-8}
¹⁴ C	5.8×10^{-7}
$^{54}{ m Mn}$	7.1×10^{-7}
⁶⁰ C o	3.4×10^{-6}
⁹⁰ S r	2.8×10^{-5}
$^{95}\mathrm{Z}\mathrm{r}$	9.5×10^{-7}
$^{95}\mathrm{N}\mathrm{b}$	5.8×10^{-7}
¹⁰⁶ Ru	7.0×10^{-6}
¹³¹ I	1.6×10^{-5} *2
¹³⁷ C s	1.3×10^{-5}
¹⁴⁴ C e	5.2×10^{-6}
²³⁹ P u	2.5×10^{-4}

^{*1} 本表の値はICRP Pub.72をもとに計算されたものである。 なお, 化学形又は性状が複数示されている核種については, そのうちで一番大きい値を記載した。

^{*2} 甲状腺への移行比fwを0.2として計算した。

1 Bq を経口摂取した場合の成人の各臓器及び組織の預託等価線量係数 2 表 |

骨表面	-								
	胸	食道		小腸	大腸上部	大腸下部	結腸	腎臟	肝臓
$4.1{ imes}10^{-8} \mid 4.1{ imes}10^{-8} \mid 4.1{ imes}10^{-8} \mid 4.1{ imes}10^{-8} \mid 4$	4.1×10^{-8} 4	4.1×10^{-8}	4.7×10^{-8}	4.1×10^{-8} 4.2×10^{-8}		4.4×10^{-8}	4.3×10^{-8}	4.1×10^{-8}	4.1×10^{-8}
5.7×10^{-7} 5.7×10^{-7} 5.7×10^{-7} 5.7×10^{-7} 5	5.7×10^{-7} 5	5.7×10^{-7} 6.3×10^{-7}	6.3×10^{-7}	5.7×10^{-7}	5.8×10^{-7}	6.0×10^{-7}	5.9×10^{-7}	5.7×10^{-7}	5.7×10^{-7}
4.7×10^{-7} 4.2×10^{-7} 6.3×10^{-7} 1.6×10^{-7} 1	1.5×10^{-7} 1	1.8×10^{-7}	4.3×10^{-7}	9.6×10^{-7}	1.4×10^{-6}	2.3×10^{-6}	1.8×10^{-6}	4.2×10^{-7}	1.0×10^{-6}
2.5×10^{-6} 2.6×10^{-6} 2.0×10^{-6} 1.4×10^{-6} 1	1.3×10^{-6} 1.7×10^{-6} 2.5×10^{-6} 4.2×10^{-6} 6.5×10^{-6} 1.2×10^{-5} 8.7×10^{-6}	$.7 \times 10^{-6}$	2.5×10^{-6}	4.2×10^{-6}	6.5×10^{-6}	1.2×10^{-5}	8.7×10^{-6}	2.4×10^{-6}	4.4×10^{-6}
6.6×10^{-7} 1.5×10^{-6} 4.1×10^{-4} 6.6×10^{-7} 6	6.6×10^{-7} 6	6×10^{-7}	9.0×10^{-7}	6.6×10^{-7} 9.0×10^{-7} 1.1×10^{-6}	5.8×10^{-6}	2.2×10^{-5} 1.3×10^{-5}	1.3×10^{-5}	6.6×10^{-7}	6.6×10^{-7}
5.3×10^{-8} 3	3.8×10^{-8} 4	4.3×10^{-8}	3.8×10^{-7}	1.1×10^{-6}	3.1×10^{-6}	7.8×10^{-6}	5.1×10^{-6}	1.6×10^{-7}	1.1×10^{-7}
7.6×10^{-8} 2.6×10^{-7} 2.1×10^{-7} 1.1×10^{-8} 2	$2.0\times10^{-8} 1.9\times10^{-8} 2.8\times10^{-7} 8.2\times10^{-7} 1.8\times10^{-6} 4.0\times10^{-6} 2.8\times10^{-6} 1.6\times10^{-7} 1.8\times10^{-8} $	9×10^{-8}	2.8×10^{-7}	8.2×10^{-7}	1.8×10^{-6}	4.0×10^{-6}	2.8×10^{-6}	1.6×10^{-7}	1.4×10^{-7}
1.5×10^{-6} 1.7×10^{-6} 1.5×10^{-6} 1.4×10^{-6} 1	1.4×10^{-6} 1	1.4×10^{-6}	3.1×10^{-6}	5.5×10^{-6}	2.5×10^{-5}	7.1×10^{-5}	4.5×10^{-5}	1.5×10^{-6}	1.5×10^{-6}
4.8×10^{-8} 8.3×10^{-7} 1.1×10^{-7} 1.1×10^{-7} 5	5.1×10^{-8} 1	1.2×10^{-7} 3.0×10^{-7}	3.0×10^{-7}	5.3×10^{-8}	8.5×10^{-8}	1.7×10^{-7} 1.2×10^{-7}	1.2×10^{-7}	4.4×10^{-8}	4.6×10^{-8}
1.4×10^{-5} 1.4×10^{-5} 1.4×10^{-5} 1.2×10^{-5} 1	$1.1\times10^{-5} 1.3\times10^{-5} 1.3\times10^{-5} 1.4\times10^{-5} 1.4\times10^{-5} 1.7\times10^{-5} 1.5\times10^{-5} 1.3\times10^{-5} 1.3\times10^{-5$	3×10^{-5}	1.3×10^{-5}	1.4×10^{-5}	1.4×10^{-5}	1.7×10^{-5}	1.5×10^{-5}	1.3×10^{-5}	1.3×10^{-5}
3.3×10^{-7} 1.1×10^{-8} 1	1.2×10^{-8} 1	1.2×10^{-8}	1.1×10^{-6}	3.7×10^{-6}	2.3×10^{-5}	6.6×10^{-5}	4.2×10^{-5}	2.0×10^{-8}	9.6×10^{-7}
1.4×10^{-5} 1.4×10^{-5} 8.2×10^{-3} 1.4×10^{-5} 1	1.4×10^{-5} 1.4×10^{-5} 1.6×10^{-5} 1.7×10^{-5} 3.3×10^{-5} 6.7×10^{-5} 4.8×10^{-5}	4×10^{-5}	1.6×10^{-5}	1.7×10^{-5}	3.3×10^{-5}	6.7×10^{-5}	4.8×10^{-5}	3.4×10^{-5}	1.7×10^{-5}

核種	筋肉	卵巣	膵臓	赤色骨髄	外郭気道	塩	皮膚	脾臟	精巣	胸腺	甲状腺	上回	残りの組織
H_{ϵ}	4.1×10^{-8}	4.1×10^{-8} 4.1×10^{-8} 4.1×10^{-8} 4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8}		4.1×10^{-8} 4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8} 4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8}	4.1×10^{-8}
14 C	5.7×10^{-7}	5.7×10^{-7} 5.7×10^{-7} 5.7×10^{-7} 5.7×10^{-7}	5.7×10^{-7}		5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7} 5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7}	5.7×10^{-7}
$^{54}\mathrm{Mn}$	2.8×10^{-7}	2.8×10^{-7} 1.1×10^{-6} 4.3×10^{-7} 6.1×10^{-7} 1.6×10^{-7}	4.3×10^{-7}	6.1×10^{-7}	1.6×10^{-7}	2.5×10^{-7}	1.6×10^{-7}	2.6×10^{-7}	2.0×10^{-7}	2.0×10^{-7} 1.8×10^{-7} 1.6×10^{-7}	1.6×10^{-7}	5.6×10^{-7}	2.9×10^{-7}
60 C o	1.9×10^{-6}	4.3×10^{-6}	2.6×10^{-6}	4.3×10^{-6} 2.6×10^{-6} 12.1×10^{-6} 1.7×10^{-6}	1.7×10^{-6}	1.8×10^{-6}	1.3×10^{-6}	2.1×10^{-6}	1.8×10^{-6}	1.7×10^{-6}	1.7×10^{-6}	3.0×10^{-6}	1.9×10^{-6}
⁹⁰ S r	6.6×10^{-7}	6.6×10^{-7} 6.6×10^{-7} 6.6×10^{-7} 1.8×10^{-4} 6.6×10^{-7}	6.6×10^{-7}	1.8×10^{-4}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.6×10^{-7}	6.7×10^{-7}
95 Z r	1.4×10^{-7}	1.4×10^{-7} 8.7×10^{-7} 1.5×10^{-7} 4.7×10^{-7} 4.2×10^{-8}	1.5×10^{-7}	4.7×10^{-7}	4.2×10^{-8}	6.0×10^{-8}	6.3×10^{-8} 1.1×10^{-7} 1.0×10^{-7} 4.3×10^{-8} 4.2×10^{-8}	1.1×10^{-7}	1.0×10^{-7}	4.3×10^{-8}	4.2×10^{-8}	4.0×10^{-7}	1.5×10^{-7}
$q\mathrm{N}_{26}$	1.0×10^{-7}	1.0×10^{-7} 8.1×10^{-7} 1.2×10 1.8×10^{-7} 1.3×10^{-8}	1.2×10	1.8×10^{-7}	1.3×10^{-8}		3.0×10^{-8} 4.3×10^{-8} 8.9×10^{-8}	8.9×10^{-8}	8.7×10^{-8}	8.7×10^{-8} 1.9×10^{-8} 1.3×10^{-8}	1.3×10^{-8}	3.6×10^{-7}	1.2×10^{-7}
$^{106}\mathrm{R}\mathrm{u}$	1.5×10^{-6}	1.5×10^{-6} 1.7×10^{-6} 1.5×10^{-6} 1.5×10^{-6} 1.4×10^{-6}	1.5×10^{-6}	1.5×10^{-6}	1.4×10^{-6}	1.4×10^{-6}	1.4×10^{-6}	1.5×10^{-6}	1.5×10^{-6}	1.4×10^{-6}	1.4×10^{-6}	1.6×10^{-6}	1.5×10^{-6}
I 181	1.0×10^{-7}	1.0×10^{-7} 5.2×10^{-8}	5.8×10^{-8}	8.4×10^{-8}	8.4×10^{-8} 1.2×10^{-7}	8.5×10^{-8}	5.8×10^{-8}	5.1×10^{-8}	4.0×10^{-8}	1.2×10^{-7}	3.2×10^{-4}	6.0×10^{-8}	1.0×10^{-7}
137 Cs	1.2×10^{-5}	1.2×10^{-5} 1.4×10^{-5} 1.4×10^{-5} 1.3×10^{-5} 1.3×10^{-5}	1.4×10^{-5}	1.3×10^{-5}	1.3×10^{-5}	1.3×10^{-5}	1.3×10^{-5} 1.1×10^{-5} 1.3×10^{-5} 1.2×10^{-5} 1.3×10^{-5} 1.3×10^{-5} 1.4×10^{-5}	1.3×10^{-5}	1.2×10^{-5}	1.3×10^{-5}	1.3×10^{-5}	1.4×10^{-5}	1.2×10^{-5}
¹⁴⁴ C e	1.8×10^{-8}	7.4×10^{-8}	1.9×10^{-8}	1.9×10^{-7}	1.2×10^{-8}	1.3×10^{-8}	$1.8\times10^{-8} \mid 7.4\times10^{-8} \mid 1.9\times10^{-8} \mid 1.9\times10^{-7} \mid 1.2\times10^{-8} \mid 1.3\times10^{-8} \mid 1.4\times10^{-8} \mid 1.7\times10^{-8} \mid 1.6\times10^{-8} \mid 1.2\times10^{-8} \mid 1.2\times10^{-8} \mid 3.7\times10^{-8} \mid 3.7\times10^{-8} \mid $	1.7×10^{-8}	1.6×10^{-8}	1.2×10^{-8}	1.2×10^{-8}	3.7×10^{-8}	9.5×10^{-8}
239 P u	$^{299} Pu - [1.4 \times 10^{-5} 1.1 \times 10^{-4} 1.4 \times 10^{-5} 3.9 \times 10^{-4} 1.4 \times 10^{-5} 1.4 \times 10^{-5} $	1.1×10^{-4}	1.4×10^{-5}	3.9×10^{-4}	1.4×10^{-5}	1.4×10^{-5}	1.4×10^{-5}	1.4×10^{-5}	1.1×10^{-4}	1.4×10^{-5}	1.4×10^{-5}	1.4×10^{-5}	1.5×10^{-5}

本表の値は I C R P, Pub.72 のモデルをもとに計算されたものである。 なお,化学形または性状が複数示されている核種については,そのうちで一番大きい値を記載した。 甲状腺への移行比fwを0.2として計算した。 *

*

表-6 食品の摂取モデル(1人1日当りの摂取量)

		葉 菜	牛 乳	魚 類	貝 類	海藻類	精 米	飲料水
成	人	100 g	200 cm³	200 g	20 g	40 g	250 g	2,650 cm³
幼	児	50	500	100	10	20	_	_
乳	児	20	600	40	4	8	_	_

- ※1 葉菜,牛乳,魚類,貝類,海藻類の摂取量は,「発電用軽水型原子炉施設周辺の線量目標値に対する評価指針(原子力安全委員会,原子炉安全技術専門部会,一部改正平成元年3月27日)」による。
 - 2 精米の摂取量は、「国民栄養調査結果(厚生省、茨城県、昭和53年)及び「食糧需給表(農林水産省、昭和52年)」 による。
 - 3 飲料水の摂取量は、「国際放射線防護委員会(ICRP)勧告 Publication 23」による。

事務局: 茨城県生活環境部原子力安全対策課

〒310-8555 水戸市笠原町978番6

電 話 029-301-2922

FAX 029-301-6002

