Special Bulletin of the Horticultural Research Intitute Ibaraki Agricultural Center No. 3 March 2009	茨 城 県 農 業 総 合 セ ン タ 丨	茨 城 農 総 セ 園 研 特 報 Spec. Bull. Ibaraki Hort. Res. Inst. No.3 2009 SPECIAI OI HORTICURAL RE IBARAKI AGRIC
Accumulation and reduction of nitrate nitrogen content in Komatsuna (<i>Brassica campestris</i> L.) plants	園 芸 研 究 所 特 別 研 究 報 告	茨城県農業 園 芸 研 究 所 ^{第 平成}
Takashi kaidzuka		
Horticultural Research Institute Ibaraki Agricultural Center Ago, Kasama, Ibaraki 319-0292, Japan	第 三 号 平成二十一年三月	茨城県農業 園 芸 茨城県笠間 Ago, Kasama, Iba

CIAL BULLETIN OF THE RESEARCH INSTITUTE RICULTURAL CENTER

N O. 3 March 2009

業総合センター 所特別研究報告

第3号 ^Z成21年3月

農業総合センター 芸研究所

县笠間市安居 3165-1 a, Ibaraki 319-0292, Japan

コマツナ(Brassica campestris L)の 植物体内における 硝酸態窒素の集積と低減に関する研究

東京農工大学大学院連合農学研究科審査学位論文(2008年3月)

	次
	ークヘ

緒言・・・		1
第1章 コマ	マツナの品種および栽培環境の違いが体内の硝酸態窒素濃度に及ぼす影響 ・・・・	4
第1節	コマツナ栽培における作型の違いが体内硝酸態窒素濃度に及ぼす影響・・・・・	4
第2節	被覆肥料の施用と栽培温度がコマツナの硝酸態窒素濃度に及ぼす影響 ・・・・・	7
第3節	コマツナの体内硝酸態窒素濃度の品種間差異とその濃度が低い品種の特性 ・・・	1 0
第4節	考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	1 2
第5節	摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	14
第2章 温度	ぎおよび潅水量の違いがコマツナの生育・体内硝酸態窒素濃度に及ぼす影響 ・・・	16
第1節	温度の違いがコマツナの生育および作物体内硝酸態窒素濃度に及ぼす影響 ・・・	16
第2節	栽培温度や潅水量を変えたときのコマツナの	
	作物体内の硝酸態窒素濃度と葉の光合成速度, 蒸散量との相互関係 ・・・・・・	19
第3節	考察	2 2
第4節	摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	24
第3章ポン	ストハーベストにおけるコマツナ体内硝酸態窒素濃度低減技術の開発 ・・・・・	2 5
第1節	弱光照射および給水処理がコマツナの品質に及ぼす影響 ・・・・・・・・・・	2 5
第2節	コマツナへの弱光照射および保存温度の相違が	
	体内の硝酸態窒素濃度に及ぼす影響・・・・・・・・・・・・・・・・・・・・・・・	29
第3節	弱光・給水・冷蔵保存したコマツナの葉位別の硝酸態窒素濃度の変化 ・・・・・	3 1
第4節	数種野菜への弱光照射・給水・冷蔵保存処理の適用性の検討 ・・・・・・・・	34
第5節	考察・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	39
第6節	摘要・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4 0
第4章 総合	含客 ・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	4 2
第5章 摘要	要 • • • • • • • • • • • • • • • • • • •	4 5
謝辞 ・・・		47
引用文献		48
Summan	ry ••••••••••••••••••••••••••••••••••••	52

近年,食の「安心・安全」が大きくクローズアップ され,農産物生産においては収量よりも安全性に関す る品質を重要視する傾向がある.その一端として,販 売者および生産者は生産の過程,すなわち,農薬散布 の回数,肥料の量などの情報を消費者に明らかにし, 安全性をアピールしている.しかし,農作物体内の残 留農薬量,硝酸態窒素濃度など全ての成分を検査して, これらの情報を表示しているわけではないので,情報 の内容に関しては不足している.また,社会全体に健 康志向が高まり,消費者は外観品質ばかりでなく,機 能性成分などの情報にも関心が強まっている.このよ うな消費動向を背景として,今後は生産物への農薬,

硝酸態窒素含量の基準値の設定や、機能性成分などの 開示が必要になると予測される.生産者が積極的に情 報公開をするとともに、特定の農薬の残留濃度、硝酸 態窒素濃度などが検査され、一定の基準を満たした生 産物であれば、安全性が確保され、消費者の需要が向 上し、単価が向上するものと期待され、このことは生 産者にとって所得の向上につながるものと考えられる.

作物の生育には窒素、燐酸および加里の3要素が必要不可欠である.多くの作物は窒素を硝酸態窒素として優先的かつ多量に吸収する(Ikeda・Osawa, 1981)ので、野菜類には少なからず硝酸態窒素が含まれている. 海外では早くから各野菜に含まれている硝酸態窒素濃度の調査が行われている(White, 1975).

硝酸は唾液と反応して有毒な亜硝酸となり,さらに 人体に吸収された後,発ガン性物質であるニトロソア ミン化合物の生成をもたらすと考えられている

(Craddock, 1983; Sohar · Domoki, 1980; 米山, 1982). そのため、可食部の硝酸濃度は低いことが望ましく、 オランダを中心としたヨーロッパ諸国では販売される 野菜の品目や出荷期ごとに植物体内硝酸濃度の基準を 設け、これが品質の重要な要素とされている(Scharpf, 1991; Van, 1986).

一方,山下(2002)は、我が国の硝酸摂取量は、WHO (世界保健機構)が設けた摂取量の制限値をはるかに 上回っていることを報告し、人体への疾患の原因にな るものと危惧されている.日本人への硝酸摂取量のお よそ 80%以上は野菜に由来し(孫・米山、1996)、特 に、コマツナ、ホウレンソウ等の有色野菜には硝酸態 窒素濃度が高いことが報告されている(岩本ら、1968; 下橋・寺田、1994).

緒

言

近年では、作物体内への硝酸の集積は人体に対して 悪影響を及ぼすものであるという認識が消費者にも浸 透し、作物体内の硝酸態窒素含量を低減する試みが行 われている.特に、作物体内硝酸濃度が高くなるコマ ツナやホウレンソウ等の葉菜類における硝酸濃度の低 減が問題であり、農林水産省や各県の農業研究機関で はこの研究課題に積極的に取り組んでいる.

例えば、著者が住んでいる茨城県における施設を利 用した軟弱野菜類の生産額は135億円に上り、京浜市 場で大きなシェアを占めているが、単価は下がってき ている(茨城県、2005).本県では農業生産者の高齢化 が進み、近年、重量野菜から軟弱野菜類への転換が多 くなってきており、重量が小さい軟弱野菜類の生産量 は増加傾向にある.加えて、県内の産地では差別化を 図り、単価を上げるために外観品質だけではなく、内 容成分の向上を目標とする生産組織から、硝酸態窒素 の低減を行うための栽培法の開発を行ってほしいとの 要望が強くなってきている.

そこで、茨城県農業総合センター園芸研究所 (2003) では県内で生産される軟弱野菜を産地ごとにサンプリ ングし、栽培管理や環境要因との関係をモニタリング したところ、硝酸態窒素濃度は産地間で異なるが、各 生産者の施肥量および土壌中の残存硝酸態窒素含量と の因果関係の大きいことが分かった.また、体内の硝 酸態窒素濃度は夏季に高まり、また残存硝酸態窒素含 量と比例関係にあることが顕著に影響していることが 明らかになった.

野菜類の硝酸態窒素濃度には、栽培しているときの 施用窒素量が最も大きく影響を及ぼし(建部ら,1995)、 養液栽培では培養液中の硝酸態窒素濃度が高いほど、 体内硝酸態窒素濃度が高まることが知られている

(Aworth ら, 1980; 池田・大沢, 1980). 養液栽培では, 生育期間中に培養液の濃度を低くすることや,収穫前 の数日間,培養液に硝酸態窒素を含まないものに替え ることによって,地上部の体内硝酸態窒素濃度を収量 および品質を損なわずに低下させることができ

(Benoit · Ceustermans, 1995; 張ら, 1990; 王・伊東, 1997; Shinohara · Suzuki, 1988), 作物体内の硝酸態窒素 を低下させた培養液管理技術が確立されている.

しかし,茨城県で養液栽培が可能な施設面積は,作 付け面積の1%未満(茨城県,2005)であり,日本国 内の施設栽培面積に対する養液栽培の割合でも2%程 度にすぎず(農林水産省,2001),葉菜類の栽培はほとんどが土耕栽培である.土耕栽培では生育後期に窒素を減らすコントロールができない.そこで,土耕栽培での施肥管理技術は、側条施肥法による被覆肥料を利用してホウレンソウの硝酸態窒素含有率を低下させる方法(三代ら,2005;建部ら,1996)や、リン酸を抑制した施肥によりレタスの硝酸含有率を低下させる方法が報告されている(Buwalda・Warmenhoven,1999). また、小田島ら(2006)は、化学肥料の代替として牛ふん堆肥を長期施用することによって、ホウレンソウの硝酸態窒素濃度を低下できると報告し、松本ら

(1999) は有機質肥料の連用によってホウレンソウの 硝酸態窒素濃度を低減できるとしている. さらに, 近 年は、過剰な施肥を避け、作物に必要な量を生育段階 別に液肥で供給することができる養液土耕栽培法が確 立され、この方法を使うことにより、ホウレンソウの 体内の硝酸熊窒素濃度を低下できることが知られてい る (岡崎ら, 2006; 建部ら, 2006). これらの報告を考 え合わせると, 土耕栽培では過剰に窒素肥料を投与し ないこと, 栽培期間中は生育に合わせて肥料を施用す ること、緩効性の堆肥などの投与が重要であることが 浮かび上がってくる.一方,国内の畑作土壌では長年 の化学肥料施用および収量を重視した過剰な施肥等に より,施肥窒素由来の硝酸性窒素が浅層地下水の汚染 になるほどに残存が問題となっている(熊澤, 1999; 西 尾, 2001a・b)ので, 硝酸態窒素が高濃度で存在する土 壌条件下で栽培したときにその濃度をいかに低下させ るかという技術開発が求められている.

そこで、第1章では土耕栽培における多肥条件下で 栽培したコマツナ体内における硝酸態窒素の実態およ び軽減対策を検討した.すなわち、残存窒素が比較的 よく溶出してくる夏季と溶出してこない冬季に栽培し た作物体の硝酸態窒素量の比較、硝酸がゆっくり溶出 する緩効性肥料の効果、窒素の吸収が少なくても商品 性が高い収穫物が得られる品種の特性について検討し た.

一方,ホウレンソウなどの多くの葉菜類における硝酸含量の周年変動をみてみると,7月から9月に高く,1月から3月に低い傾向がみられる(藤原ら,2005;上西,2004).水分ストレスを与えたホウレンソウでは葉中の硝酸濃度が上昇すること(Sugiyama ら, 1999),硝酸は重要な浸透圧調節物質であり(McIntyre,1997),水が溶媒となって移動していること(秋山・有馬,1995)が報告されている.これらのことを合わせて考えると,

夏季における栽培において潅水量が少なくなり,体内 の水ポテンシャルが低下し,気孔が閉鎖して蒸散が停 止すると,根から吸収された硝酸は浸透ポテンシャル を高めるため使われるので,還元されることなく葉柄 や葉に蓄積すると推察される.しかし,作物体内の蒸 散,光合成,水ポテンシャルなどの関係について相互 関係を検討したものはないので,第2章では潅水量と 温度を変えて生育させたコマツナの硝酸態窒素濃度と 作物体内の蒸散,光合成,水ポテンシャルなどの関係 を検討することによって,夏作の硝酸態窒素濃度が高 い要因を検討した.

さらに、吸収された硝酸イオンは植物体内で亜硝酸 イオンを経てアンモニウムへと硝酸同化される. 硝酸 同化に関与している硝酸還元酵素は光で活性化されて いることが知られている (Lillo, 1994). よって, 遮光 を行うと作物体内で硝酸態窒素濃度が高まること (Yazawa ら, 1986) や, 受光量で体内硝酸含量が異な ることが明らかにされている (Cantliffe, 1972; Gaudreau ら、1995; Mivajima, 1994; Wheeler ら、1998). これらの 研究から、福田ら(1999)は深夜照明を利用した補光 をホウレンソウに行い、葉の硝酸イオン濃度を低下さ せた. また, 硝酸還元酵素の活性には, 光量だけでな く光強度や光質によるところもあり、光強度を上げる と硝酸還元酵素の活性も高まるとともに、植物体内硝 酸態窒素濃度が低下することが報告されている(壇ら, 2005; Hageman, 1960). さらに, 硝酸還元酵素は光だけ でなく、培地の窒素含量が多いと活性低下が誘導され ることが知られている (Remmler · Campbell, 1986). 農業資材の開発が進み、光質選択性フイルムが普及し つつあり,作物の生育および内容成分と適度な光強度 および光質の関係を明らかにするような研究も試みら れている.

よって、先に述べた補光(福田ら、1999)のように、 光の制御によって体内硝酸態窒素濃度の低下を行うこ とができる.過剰な施肥などにより、施肥窒素由来の 硝酸性窒素が残留している地域での栽培では、栽培条 件だけでは減らすことができないので、収穫した青果 物に光を照射して、窒素量を減らすことができるか否 かを検討した.そこで、第3章では収穫したコマツナ に弱光照射したときの作物体や硝酸態窒素濃度の影響 を検討した.

上述したように、本研究ではコマツナ(Brassica campestris L.)体内の硝酸態窒素の蓄積に影響を及ぼすと考えられる栽培環境、作型、肥料の種類と施肥量、

品種の影響を把握した.次に夏作で硝酸態窒素濃度が 高かったので,その要因を温度と潅水量に着目して水 ポテンシャルと蒸散作用に着目して解析した.さらに, 収穫後に作物体に光を照射して硝酸態窒素を低減させ る新しい方法を開発した.

本論文は4章から構成され、第1章は「コマツナの

品種および栽培環境の違いが体内の硝酸態窒素濃度に 及ぼす影響」,第2章は「温度および潅水量の違いがコ マツナの生育・体内硝酸態窒素濃度に及ぼす影響」,第 3章は「ポストハーベストにおけるコマツナ体内硝酸 態窒素濃度低減技術の開発」,第4章は「総合考察」で ある.

第1章 コマツナの品種および栽培環境の違いが

体内の硝酸態窒素濃度に及ぼす影響

植物の体内硝酸態窒素濃度には季節的変動があり, 高温期には低温期よりも高いことが報告されている (伊達ら,1980;藤原ら,2005).茨城県内で生産され る葉菜類で調べてみても、冬季に生産されるものと比 較して、夏季には体内硝酸態窒素濃度が高い傾向を示 し、SPAD 値の低下といった外観品質の低下もみられ た(茨城県農業総合センター園芸研究所,2003).

植物体内へ吸収された硝酸熊窒素は、硝酸環元酵素 により硝酸同化されることから、硝酸還元酵素の活性 を高めることが硝酸態窒素含量の低下につながる. 硝 酸還元酵素は光で活性化されていること(Lillo, 1994) から、受光量の違いで体内硝酸含量が異なることが明 らかにされている (Cantliffe, 1972; Gaudreau, 1995; Miyajima, 1994; Wheeler ら, 1998) ので, 日長が長い方 が体内の硝酸態窒素濃度は低下する.また、茨城県で は高温期の昇温抑制やホウレンソウ栽培で夏季に抽台 を抑制するために遮光を行っている. 産地の栽培方法 で遮光を行うと,遮光割合に比例して硝酸態窒素濃度 が高くなること(池羽ら, 2005)が報告されているこ とから、光の強度も硝酸態窒素の蓄積に影響すると考 えられる. さらに、施用した窒素が比較的早く溶出し てくる夏季では硝酸の吸収量が多くなる. これらのこ とから、夏季は1日の日長時間が長く、光強度も大き く、硝酸同化は促進されるが、土壌からの窒素の吸収 量が多いために、吸収された全ての硝酸が同化されな いで体内に残存すると推察される.一方,夏季は播種 から収穫までの日数が短く,積算日長時間は冬季に比 べると短くなると考えられ、積算日長時間の長短が体 内の硝酸態窒素濃度に関係していると推察される.

一方,施用窒素量が,体内硝酸態窒素濃度に最も大 きく影響を及ぼしていること(建部ら,1995)が知ら れている.また,牛ふん堆肥の連用(小田島ら,2006) や有機質肥料の長期施用(松本ら,1999)によって体 内硝酸態窒素濃度を低下させた事例がある.これらは, 土壌中の無機化窒素量を緩慢にし,急速な硝酸態窒素 の吸収を抑制したものと考えられる.しかし,無機化 には微生物が関与しており,微生物の働きは温度が律 速している.有機質肥料の緩慢な無機化機能を兼ね備 え,無機化する温度条件を一定にした緩効性被覆肥料 を利用した体内硝酸態窒素低減が試みられ、建部ら (1996)はホウレンソウを使って、体内硝酸態窒素低 減と同一生育日数での窒素吸収量を明らかにしている が、温度との関係については検討していない.

従来、生産者は収量性および外観品質に優れる品種 を選定し、生産を行ってきたが、近年は、消費者のニ ーズが内容成分に向けられるようになってきたことを 反映して、生産現場では硝酸熊窒素濃度の上限を設定 し、その目標を達成するための品種と栽培管理技術の 両面について検討するようになってきている.しかし, コマツナ品種では硝酸熊窒素濃度が低いと宣伝されて いる品種は販売されていない. また, 茨城県のモニタ リング(茨城県農業総合センター園芸研究所, 2003) の結果でも、作型によって栽培する品種が異なること や作付けする品種が偏っていたこともあり、硝酸態窒 素濃度の品種間差は明確ではなかった.一方、オラン ダではレタスにおいて体内硝酸態窒素濃度の低い品種 の育成が行われている (Reinink · Eenink, 1988). 飼料 用トウモロコシ(原田ら、2001)では、硝酸態窒素濃 度に品種間差のあることが報告されており、イネ

(Barlaan・Ichii, 1996) では硝酸還元酵素の活性の遺伝 子型間変異について報告されている. コマツナ品種で は、未だに収量性や外観品質を重視した品種育成が行 われており、体内硝酸態窒素と品種との関係は明確で はない. そこで、第3節では夏季に作付けが可能なコ マツナ品種の中で、硝酸態窒素濃度が低い品種の特性 を明らかにしようとした.

第1節 コマツナ栽培における栽培環 境の違いが体内硝酸態窒素濃 度に及ぼす影響

国内で生産されたコマツナを夏季と冬季で比較する と,著しく夏季で硝酸態窒素濃度が高くなる.そこで, 夏季に栽培されたコマツナ体内の硝酸態窒素濃度が高 くなった温度,日長,日射量等の環境要因,特に日長 との関係から解析した.

材料および方法

供試品種にはコマツナ (Brassica campestris L.) '楽 天'を用い,夏作は7月4日に,冬作は12月20日に パイプハウス内の表層腐質黒ボク土に播種した.施肥 管理は茨城県耕種基準 (茨城県農業総合センター, 2004) に準じて,基肥のみとし,硝燐安加里 (N 16%, P₂O₅ 10%, K₂O 14%) 7.5 kg·a⁻¹, 熔燐 (P₂O₅ 20%) 2.3 kg·a⁻¹を施用した.条間12 cm,株間3 cmの間隔 で1穴当たり2粒ずつ点播した.試験区は、1区2.5 m² とし4反復設置した.播種前および栽培期間中,潅水 チューブで適宜潅水し,播種10日後に均一な株を残す ように間引きを行い、1穴1株立ちとなるようにした. 収穫は、草丈が25 cm程度 (茨城県, 2003) に生育し たときに一斉に行い,収穫日は夏作が8月1日 (播種 28日後) に、冬作は2月3日 (播種45日後) にそれ ぞれ一斉に行った.

1区当たり10株を選んで収穫し、生体重、草丈およ び葉身長を測定した.葉色の測定には葉緑素計

(SPAD-502, ミノルタ社)を用い, SPAD 値を示した. 収穫した10株のうち平均的な大きさの株を3株選び, -30℃で凍結保存した.硝酸イオン濃度を測定するため, 凍結保存した株から5gずつ採取し,蒸留水を45mL 加えて磨砕したものに,さらに蒸留水を50mL加え, 遠心力6400×g,20℃の条件で10分間遠心分離して調 整した.その上澄み液の硝酸イオン濃度を小型反射式 光度計システム RQ フレックス2(関東化学)で測定 した(建部・米山, 1995). 測定した硝酸イオン濃度は 生体重当たりの硝酸態窒素濃度(mg・kg⁻¹FW)に換算 して示した.

結 果

作型別(夏作,冬作)におけるコマツナ栽培期間中 のハウス内温度の推移をみると(第1図),降雨があっ た時を除いて側窓を開放した夏作では25~33℃の範 囲で推移したのに対し,冬作はハウスの側窓を閉めた のにも関わらず,4~12℃の範囲で推移し,夏作よりも 著しく低かった.収穫までの日数は主に温度差が影響 を及ぼし,ハウス内の温度が高かった夏作は28日,冬 作では45日であった.

積算日照時間は、冬作の方が夏作より45時間程度高 くなった.これは、夏作の栽培期間が28日であったの に対し、冬作ではそれ以降も栽培が続いたためであり、 冬作の播種37日目に夏作と同時間になり、播種45日 後に夏作の積算日照時間を45時間程度上回った.一方、 積算日射量は栽培期間が短かった夏作が冬作よりも多 く、播種28日後で比較すると冬作は夏作の40%程度 であり、収穫時で比較すると冬作は夏作の40%程度 であり、収穫時で比較すると62%に止まった.1日当 たりの日射量に換算すると、夏作では22.8 MJ・m⁻²・ day⁻¹で、冬作は8.9 MJ・m⁻²・day⁻¹であり、夏作の方 が著しく大きかった(第2図).

コマツナの生育は収穫時期の草丈で判断したため,

^ℤ地上1.0 m を測定した

第2図 作型別における積算日照時間²および積算日射量²の推移 *茨城県農業総合センター園芸研究所内(茨城県笠間市) 自動気象観測機による測定値を引用

	作型の違いか	ジコマツナの生	育および葉色に	及ぼす影響
作型	生体重	草丈	葉身率 ^z	葉色
	(g/株)	(cm)	(%)	(SPAD值)
夏作	$17.7 \pm 0.81^{\mathrm{y}}$	$25.2 \ \pm \ 0.24$	$47.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.54$	$31.0\ \pm\ 0.30$
冬作	22.5 ± 1.32	$25.8 \ \pm \ 0.48$	54.9 ± 0.79	$43.0 \ \pm 0.69$
有音性 ^x	*	NS	*	**

有意性

²葉身率=葉身長/草丈×100

^y平均值±標準誤差

^xt-検定により*は5%, **は1%水準で有意差あり

草丈は夏作と冬作で同等になったが、夏作の生体重は 17.7 gであったのに対し、冬作のそれは22.5 gであり、 夏作は冬作に比べて有意に小さかった. 葉の形態を葉 身率でみると、夏作は冬作よりも葉身率が小さく、葉 柄の長さが葉身の長さよりも短かった. 葉の緑色程度 を示す SPAD 値は、冬作で 41.0、夏作で 31.0 となり、 夏作は著しく緑色が薄く、外観が悪かった(第1表). コマツナ株の硝酸態窒素濃度は、夏作が 1474 mg・kg ⁻¹FW であったのに対し、冬作で 847 mg・kg⁻¹FW と なり、夏作は冬作よりも 74%程度高かった. しかし、 硝酸イオンに換算すると夏作は 6528 mg・kg⁻¹FW、冬 作は 3751 mg・kg⁻¹FW となり、ヨーロッパ委員会が 定めたホウレンソウでの体内硝酸態窒素濃度の上限値 である 3000 mg・kg⁻¹FW (Scharpf, 1991; Van, 1986) よ りも大きかった(第3 図).

第2節 被覆肥料の施用と栽培温度が コマツナの硝酸態窒素濃度に 及ぼす影響

コマツナ栽培における窒素吸収特性を明らかにする ため、被覆肥料を無窒素の培養土に施用した区と、速 効性の一般的な化成肥料を施用した区とを設け、コマ ツナの生育、窒素吸収量および残存硝酸態窒素含量を 比較して検討した.さらに、コマツナの硝酸態窒素濃 度が夏季に増加する要因を明らかにするため、被覆肥 料と栽培温度との関係を検討した.

材料および方法

供試品種にはコマツナ '楽天'を用い,培養土を入 れたプラスチックプランターに9月16日に播種した. 試験区は屋外型ファイトトロンを2室利用し,ファイ トトロンの設定温度を変え,16°C(以下,低温区)お よび24°C(以下,高温区)とした.培養土は砂,バー ミキュライトおよびピートモスを3:1:1(容積比)に混 合したものを用い,プラスチックプランター(上底 550×155 mm,下底530×135 mm,深さ110 mm)に培養 土を9L充填した.培養土には,プランター(上底 530×155 mm,下底530×135 mm,深さ110 mm)に培養 土を9L充填した.培養土には、プランター当たり肥 効調節型被覆肥料(N12%, P₂O₅ 10%, K₂O 11%, 40日溶出タイプ) 16.3 g,熔燐(P₂O₅ 20%) 3.7 g をそれぞれ混和して施用した被覆肥料区(以下,被覆 区)と、硝燐安加里(N16%, P₂O₅ 10%, K₂O 14%) 12.2 g,熔燐(P₂O₅20%) 3.7 g をそれぞれ混和して 施用した化成肥料区(以下,慣行区)を設け、ファイ トトロンごとに1区当たり3プランターを供試した. 播種は条間5 cm,株間3 cmの間隔で1穴当たり1粒 ずつ点播した.播種直前および栽培期間中,如露で適 宜潅水を行った.

調査は播種 15 日後(10 月 1 日)に各プランターと もコマツナの草丈を10株ずつ調査した.10 月 16 日(播 種 30 日後)にプランター当たり10株を一斉に収穫し (最も生育が早かった区の草丈が 25 cm に達したと き),生体重および草丈を測定した.測定した株から平 均的な大きさの3株を-30℃で凍結保存し,第1節と同 様な方法で硝酸イオン濃度を測定し,測定した硝酸イ オン濃度を硝酸態窒素濃度(mg・kg⁻¹FW)に換算して 示した.

また、各プランターに残っている株を3株ずつ収穫 し、80℃で48時間通風乾燥して得た乾物を粉砕し、粉 体としたものを試料として C/N コーダー(vario MAX CN, elementar)で窒素含有量を測定した.キャリアー ガスとして He を用い、燃焼温度を900℃条件にして測 定し、単位面積当たりの窒素吸収量として示した.さ らに、各プランター内より地下 10 cm の培養土3 区画 サンプリングし、風乾したもの5 gに、蒸留水25 mL 添加して 60 分間振とうした後、No.5A ろ紙 (ADVANTEC 社)でろ過し、ろ液を RQ フレックス2 で硝酸イオン濃度を測定し、測定した硝酸イオン濃度 を硝酸態窒素含量(mg・100 g⁻¹乾土)に換算して示し た.

結 果

実験を行ったファイトトロン内の温度は、第4図に 示した通りに推移し、16℃に設定した低温区は14~ 18℃、24℃に設定した高温区は22~26℃の範囲で推移 し、低温区と高温区を同一時刻で比較すると常に高温 区は8℃程度高かった.

コマツナの播種15日後の生育は(第5図),低温区 よりも高温区で草丈が長い傾向がみられ,低温区内で は被覆区が慣行区よりも有意に短く,株のばらつきが 多かった.しかし,高温区内での肥料の種類による草 丈の差はみられなかったことから,低温下における被 覆肥料は十分な無機態窒素が溶出していないと推察さ れる.

播種30日後に収穫した株の生育をみると(第6図), 生体重および草丈とも同様な傾向を示し、低温区において施肥区間で違いが認められ、慣行区が被覆区より も草丈と生体重が大きかった.一方、高温区における

第6図 温度および肥料の種類の違いがコマツナの生育に及ぼす影響(播種30日後)
 図中の縦線は標準誤差を示す図中の異なるアルファベット間に
 Duncan 検定により有意差あり(P<0.05)
 下段のアルファベットは生体重,上段は草丈の有意性を示す

施肥区間の違いはみられなかった.次に,肥料間で比 較すると,慣行区において温度による差はみられなか ったが,被覆区において温度による差がみられ,播種 15日後に測定した草丈(第5図)と同様に低温区が高 温区よりも草丈が短く,生体重も小さかった.また, 低温区の被覆区での生育は生体重のばらつきが多くみ られ,生育初期から収穫まで実験期間を通して小さか った.

次に、コマツナの窒素吸収量および残存硝酸態窒素 含量を第2表に示した.窒素吸収量に及ぼす主効果は、 肥料の種類であり、温度の影響は小さいか認められな かった.すなわち、コマツナ株の窒素吸収量は施用し た肥料の種類に依存し、被覆区が慣行区よりも少なく、 特に、低温である低温・被覆区が顕著に小さかった. また、収穫直後の培養土中に残存していた硝酸態窒素 含量も窒素吸収量と同様に、肥料の種類による違いに 主効果が認められ、被覆区では慣行区よりも少なかっ た.特に、低温・被覆区では1.7 mg・100g⁻¹乾土と僅 かに残存する程度であった.また、生育期間中の温度 と肥料の種類による交互作用がみられ、被覆肥料は低 温で溶出量が少ないことがわかった(第2表).つまり、 本試験ではそれぞれ同量の窒素成分を施用しているた め、低温・被覆区では溶出していない成分が多いと推 察された.

一方,体内の硝酸態窒素濃度(第7図)をみると, 両温度区内とも慣行区が被覆区よりも高く,肥料の種 類では慣行区が低温区と高温区でほぼ同じであったの に対して,被覆区では低温区が高温区よりも有意に低 かった.低温・被覆区以外の3区では1000 mg・kg⁻¹ FWを超えたのに対して低温・被覆区は798 mg・kg⁻¹ FW と最も低くかった.よって,低温・被覆区は低温 のため施用窒素の無機態窒素の溶出量が少なく,窒素 吸収量が不足したため体内硝酸態窒素濃度が低く,生 育が不良であった.

第2表 温度および肥料の種類の違いがコマツナの窒素吸収量と 収穫時の培養土中残友硝酸能容素今日に及ぼす影響

収役的の47日夜上 次日前 00 応至示 日 里に 反 は) 影音						
温度	肥料	窒素吸収量	残存硝酸態窒素含量			
		$(\mathbf{g} \cdot \mathbf{m}^{-2})$	(mg・100 g ⁻¹ 乾土)			
声泪	被覆	$5.88 \pm 0.36^{\text{y}}$	4.5 ± 0.5			
同価	慣行	$6.35 \hspace{0.1in} \pm \hspace{0.1in} 0.42$	7.7 ± 0.9			
任证	被覆	$4.70 \hspace{0.1in} \pm \hspace{0.1in} 0.60 \hspace{0.1in}$	1.7 ± 0.4			
化合	慣行	6.16 ± 0.19	6.3 ± 1.7			
分散分	}析 ^ℤ					
温	.度	N S	N S			
肥料		*	*			
温度>	×肥料	N S	**			
z * 5 0/	/ **1 0/	水淮でこれごれ古音				

**5%, **1%水準でそれぞれ有意差あり (n=3)

^y平均值±標準誤差

第7図 温度および肥料の種類の違いがコマツナの体内硝酸態窒素濃度に及ぼす影響 図中の縦線は標準誤差を示す

図中の異なるアルファベット間に Duncan 検定により有意差あり (P<0.05)

第3節 コマツナの体内硝酸態窒素濃度の品種間差異とその濃度が 低い品種の特性

コマツナ品種では、未だに収量性や外観品質を重視 した品種育成が行われており、体内硝酸態窒素と品種 との関係は明確ではない.そこで、夏季に作付けが可 能なコマツナ品種の中で、硝酸態窒素濃度が低い品種 の特性を明らかにしようとした.

材料および方法

供試したコマツナ品種には、'夏楽天'(タキイ種苗)、 'あゆみ''ひとみ'(トーホク)、'青一郎'(渡辺 農事)、'よかった菜''KA-2119'(カネコ種苗)、 'はづき''きよすみ'(サカタのタネ)、'MSX-204'(武蔵野種苗園)、'せいせん 26 号''試交 87 号'(協和種苗)、'グリーンフライト'(ナント種苗) の12 品種を用いた.試験区は、1 区 1.5 ㎡とし3 反復 設置した.5 月 25 日にパイプハウス内の表層腐質黒ボ ク土に条間 18 cm、株間 18 cm の間隔で1 穴当たり 5 粒ずつ点播し、播種 11 日後に、発芽後生育の良い株を 1 穴当たり 3 株残した.施肥管理は茨城県耕種基準(茨 城県農業総合センター、2004)に準じ、基肥のみとし、 硝燐安加里(N 16%、 P_2O_5 10%、 K_2O 14%) 7.5 kg・ a^{-1} 、熔燐(P_2O_5 20%) 2.3 kg・ a^{-1} を施用した.

調査は播種 24~25 日後に行い(最も生育が早い品種 の草丈が 30 cm に達する直前),1 区当たり 10 株採取 して生体重,草丈および葉色を測定した.測定した株 から平均的な大きさの 3 株を-30□で凍結保存し,凍結 保存した各株から 5 g を採取し,45mlの蒸留水ととも に磨砕し,さらに蒸留水を 50 mL 加えて撹拌した.そ の後,No.3 ろ紙(ADVANTEC 社)で吸引ろ過し,蒸 留水で 10 倍に希釈し,0.45µm メッシュのミリポアフ ィルター(日本ミリポア)でろ過したものを抽出液と した.抽出液については,硝酸イオンの測定をイオン クロマトグラフィー(DX500,日本 DIONEX 社)に よって行った.なお,カラムは IonPac AS4A-SC (DIONEX 社)を使用した.測定した硝酸イオン濃度 は,生体重当たりの硝酸態窒素濃度(mg・kg⁻¹FW)に 換算して示した.

結 果

コマツナ品種の収穫時の生育をみると(第3表),生 体重ははづき'(44.1g)ときよすみ'(36.1g)が大き く, '青一郎'(19.3g)とひとみ'(20.0g), '試交 87 号'(20.0g)が小さかった. 草丈は'夏楽天'(29.8 cm) が最も長く, ひとみ'(22.8 cm)が最も短かった. 草 丈に占める葉身の割合を示した葉身率は, '夏楽天' (62.1%), 'はづき'(59.0%), 'ひとみ'(58.0%)が高 く, 他品種は 50%程度であった. SPAD 値は'よかった 菜'(41.1)が最も大きく, 葉色が濃かったが, '夏楽天' (33.1) および'あゆみ'(33.2) は淡かった.

次に、コマツナ品種の外観をみると(第4表)、株張 りは '夏楽天' と 'KA-2119', 'きよすみ', 'せい せん26号'が大きく、 'あゆみ'、 'ひとみ'、 'よ かった菜', '試交 87 号'および'グリーンフライ ト'が小さかった. 草姿は 'あゆみ'と '青一郎' が やや開帳性であったが、他品種は立性から極めて立性 であった. 葉形は 'KA-2119' 'きよすみ' および 'グリーンフライト'が短楕円形で小さかったのに対 し、他の品種は丸形から長楕円形で大きかった. 葉色 は 'KA-2119' で SPAD 値が大きかったにも関わら ず鮮緑色であったが、他品種では SPAD 値が大きいと 極濃緑色と判断され、SPAD 値が小さいと鮮緑色で淡 いと判断された. 葉柄に着目してみると、株張りの大 きさに関係なく葉柄が太い品種が多く、 '青一郎'は 葉柄が太くかつ短くチンゲンサイに類似していた.葉 柄の色は'よかった菜'および'KA-2119'は濃緑 色であった.

品種ごとの体内硝酸態窒素濃度を第8図に示した. いずれの品種も800 mg・kg⁻¹FW を超え、硝酸イオン に換算すると3000 mg・kg⁻¹FW 以上と高濃度であっ た.その中で'よかった菜'(815 mg・kg⁻¹FW)は 著しく低かったが、'あゆみ'(1461 mg・kg⁻¹FW) および'せいせん26 号'(1265 mg・kg⁻¹FW)は著 しく高かった.

コマツナ 12 品種における体内硝酸態窒素濃度と生 育および形態との相関関係を第5表に示した.硝酸態 窒素濃度と本実験で測定した生体重,草丈,葉身率, SPAD 値,株張り,草姿,葉形および葉色など生育と の間に有意な相関は認められなかった.

品種	生育日数	生体重	草丈	葉身率 ²	葉色
	(日)	(g /株)	(cm)	(%)	(SPAD値)
MSX-204	24	$22.7 \pm 2.5^{\text{y}}$	29.6 ± 1.3	49.1 ± 0.4	$38.2 \ \pm 0.6$
せいせん26号	24	$24.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$	$27.6 \ \pm \ 1.1$	$53.2 \hspace{0.2cm} \pm \hspace{0.2cm} 2.3 \hspace{0.2cm}$	$40.2 \hspace{0.2cm} \pm \hspace{0.2cm} 1.0$
試交87号	24	$20.0 \hspace{0.2cm} \pm \hspace{0.2cm} 3.5$	$29.6 \ \pm \ 1.2$	$55.1 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$	$36.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.3$
グリーンフライト	24	$20.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0$	$27.3 \ \pm \ 1.8$	$50.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.8$	$37.5 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9$
夏楽天	25	$28.1 \hspace{0.2cm} \pm \hspace{0.2cm} 3.0$	$29.8 \ \pm \ 1.4$	$62.1 \hspace{0.2cm} \pm \hspace{0.2cm} 2.2 \hspace{0.2cm}$	$33.1\pm$
あゆみ	25	$24.0 \hspace{0.2cm} \pm \hspace{0.2cm} 2.2$	$27.2 \ \pm \ 1.6$	$50.3 \hspace{0.2cm} \pm \hspace{0.2cm} 0.4$	$33.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.9$
ひとみ	25	$20.0 \hspace{0.2cm} \pm \hspace{0.2cm} 1.6$	$25.7 \ \pm \ 1.8$	$58.0 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$	$39.5 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$
青一郎	25	$19.3 \hspace{0.2cm} \pm \hspace{0.2cm} 1.0$	$22.8 \ \pm \ 1.3$	$54.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.7$	$37.6 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0 \hspace{0.2cm}$
よかった菜	25	$21.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.9$	$27.0~\pm~1.6$	$50.9 \hspace{0.2cm} \pm \hspace{0.2cm} 1.7$	$41.1 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$
KA-2119	25	$28.5 \hspace{0.2cm} \pm \hspace{0.2cm} 2.0$	$28.3 \ \pm \ 1.0$	$50.9 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$	$37.4 \hspace{0.2cm} \pm \hspace{0.2cm} 1.4$
はづき	25	$44.1 \hspace{0.2cm} \pm \hspace{0.2cm} 3.3$	$29.7 \hspace{0.2cm} \pm \hspace{0.2cm} 1.2$	59.0 ± 2.1	$38.2 \hspace{0.2cm} \pm \hspace{0.2cm} 0.5$
きよすみ	25	$36.1 \hspace{0.2cm} \pm \hspace{0.2cm} 2.8$	29.6 ± 1.5	50.4 ± 1.9	34.3 ± 2.1
有意性 ^x	_	*	*	**	**

第3表 コマツナ12品種における生体重,草丈などの特性

²葉身率=葉身長/草丈×100 ^y平均值±標準誤差

*F-検定により*5%, **1%水準で有意差あり

第4表 コマツナ12品種における外観特性

品種名	株張り	草姿	葉形	葉色	その他
MSX-204	普通	立性	長楕円形	鮮緑色	葉柄が太い
せいせん26号	大きい	立性	長楕円形	濃緑色	葉柄が太い
試交87号	小さい	極立性	長楕円形	鮮緑色	葉柄が小さい
グリーンフライ	ト小さい	極立性	短楕円形	鮮緑色	葉柄が小さい
夏楽天	大きい	立性	長楕円形	鮮緑色	葉柄が太い
あゆみ	小さい	やや開帳	長楕円形	鮮緑色	葉柄が太い
ひとみ	小さい	立性	長楕円形	極濃緑色	葉柄が太い
青一郎	大きい	やや開帳	丸形	鮮緑色	葉柄が太い・短い
よかった菜	小さい	極立性	長楕円形	濃緑色	葉柄が濃緑色
KA-2119	大きい	極立性	短楕円形	濃緑色	葉柄が濃緑色
はづき	普通	立性	短楕円形	鮮緑色	葉身が小さい
きよすみ	大きい	立性	短楕円形	濃緑色	葉に光沢

第5表 コマツナ12品種における硝酸態窒素濃度と生育および形態との相関関係

	生体重	草丈	葉身率 ^z	SPAD値	株張り ^y	草姿 ^x	葉形 ^w	葉色 ^v
	(g/株)	(cm)	(%)					
硝酸態窒素濃度 ($mg \cdot kg^{-1}FW$)	0.038 ^u	0.154	-0.109	-0.255	0.296	-0.373	0.042	0.021
^z 葉身率=葉身	長/ 草丈×	100						
^y 株張り 小さ	<u> そい: 1.0,</u>	普通: 3.0	,大きい	:5.0と指	数化した			
^x 草姿 やや開	帳性: 2.0), 立性:4	1.0, 極立	性: 5.0 と	指数化し	た		
₩葉形 短楕円]形: 1.0,	長楕円形	:3.0, 丸	形: 5.0 と	指数化し	た		
*葉色 鮮緑色	É:1.0, 濃	禄色: 3.0	,極濃緑	色: 5.0 と	指数化し	た		
^u r値(n=12)							

第8図 コマツナ12品種における体内硝酸態窒素濃度の相違 図中の横線は標準誤差を示す 図中の異なるアルファベット間に Duncan 検定により有意差あり(P<0.05) 図中の破線は供試した品種の平均値を示す

第4節 考 察

野菜の品質評価の一つとして、ヨーロッパ諸国では 作物体内硝酸態窒素量の多少が重要な項目になってい る (Scharpf, 1991; Van, 1986). ホウレンソウの基準値 は、硝酸イオン濃度が 2000~3500 mg・kg⁻¹FW であ る (山下, 2002). また、季節ごとに基準値が決められ、 春夏期の硝酸イオン濃度は2500 mg・kg⁻¹FW であり、 秋冬期よりも低く設定されている (Benoit・Ceustermans、 1995).体内硝酸態窒素濃度に季節的変動があることは, よく知られた事実である.例えば,伊達ら(1980)は コマツナの春作と秋作に差があることを,藤原ら (2005)は市販ホウレンソウを調査し,7月~9月の濃 度が1月~3月よりも高い傾向にあることを報告して いる.本研究でもコマツナ株の硝酸態窒素濃度は,夏 作が冬作よりも著しく高く(第3図),季節変動が認め られた.

そこで、夏季における硝酸態窒素濃度が高い要因を

温度や日長などに着目して解析したところ、夏作は冬 作に比べて,栽培期間が短く,平均温度が顕著に高く (第1図), 積算日射量が多く, 積算日照時間が短いこ とが分かった(第2図). 硝酸同化に関与している硝酸 還元酵素は光で活性化される (Lillo, 1994) ので,光強 度に影響される (Kojima ら, 1995). また, 光合成有効 光量子束密度は 122 μmol · m⁻² · s⁻¹のような小さ い補光でもホウレンソウの硝酸態窒素が低下する(福 田ら、1999)ので、受光時間が関係する.これらのこ とから、夏季は温度が高く、土壌からの無機化窒素発 現量が多く(高橋・山室, 1992),吸収量も多い(梅津 ら、1969)が、1日の日長時間が長く、光強度も大き いために硝酸同化は促進される.しかし,吸収された 全ての硝酸が同化するための積算日照時間が短いため, 体内に残存する量が多くなると推察される. 結果とし て、コマツナは草丈を基準として収穫されるので、高 温で生育速度が速い夏作では冬作よりも播種から収穫 までの日数が短く, 積算日照時間が短くなるが, この ことが硝酸態窒素濃度を高くした要因の一つと考えら れた.

一方,夏季は高温のため肥料の溶出が多くなるので, その溶出を制御できる肥料であれば,作物体内への吸 収を抑えることができるので,結果的に体内の硝酸態 窒素濃度を低下させることが期待できる.被覆肥料は 水と温度によって肥料成分の溶出が制御されている (羽生,1998).建部ら(1996)は肥効調節できる被覆 肥料の利用により作物体内の硝酸態窒素濃度を低下さ せることが可能であると報告している.被覆肥料の利 用は硝酸態窒素濃度を低下できるだけでなく,追肥の 削減による省力化,つまり施肥を一度に行っても濃度 障害を回避できることが期待されるため,生産者に普 及しつつある.しかし,高温期に適用できるか否かが, 栽培上の問題であるにもかかわらず,従来夏作におけ る被覆肥料の施用効果を評価している報告は少ない.

そこで、第2節では被覆肥料と化成肥料を施用し、 低温(14-18℃)と高温(22-26℃)条件で生育させた コマツナの生育、窒素吸収量、土壌中の残存硝酸態窒 素量、作物体の硝酸態窒素濃度を測定した.播種15 日後(第5図)および播種30日後の生育(第6図)は、 高温区において被覆区と慣行区の生育がほぼ同じであ ったが、低温区では処理間で相違があり、被覆区は慣 行区に比べて、生育が劣っていた.一方、本実験で施 用した被覆肥料は25℃の条件で、40日で溶出するタイ プを利用した.供試した培養土の成分からみて易分解 性有機態窒素が含まれていないので、窒素の吸収量は 施用した肥料に由来していると考えられる.よって、 緩効性肥料は温度が高ければコマツナの生育に十分な 量の溶出が確保されていると考えられ、生育は不良と ならない.しかし、低温では肥料成分の溶出が制限さ れているので、適宜十分な潅水量を与えても、被覆区 の生育が劣ったものと考えられる.これは、温度が被 覆肥料の肥料成分の溶出パターンを律速しているので、 低温では被覆肥料からの無機化窒素の溶出が極端に少 なかったことによるものと推察された.そこで、窒素 吸収量や作付け後の土壌中の残存硝酸態窒素含量(第 2表)をみると、慣行区は被覆区よりも窒素吸収量と 作付け後の土壌中残存硝酸態窒素含量が多かったこと

(第2表)から、温度に関わらず緩効性肥料は慣行区 の化成肥料よりも溶出量が少ないことが確認できた. また、窒素吸収量や作付け後の土壌中の残存硝酸態窒 素濃度は両温度区ともに慣行区が被覆区に比べて大き いが、体内硝酸態窒素濃度(第7図)も大きく、また、 高温区では肥料の違いによる生育差がないので、十分 に潅水が行われたコマツナは溶出した無機化窒素量に 応じて蓄積する特性があると考えられる. すなわち, 慣行区では体内硝酸態窒素量も多かったが、これは土 壌中への多量な溶出に伴い初期から旺盛に窒素を吸収 し続け、生育量は旺盛になるが、窒素吸収量が多いた めコマツナ体内の硝酸態窒素量が多くなったと推察さ れる.一方,低温・被覆区では低温のために施用窒素 の無機態窒素の溶出量が少なく、窒素吸収量が不足し たため生育が不良になったと考えられる. よって、コ マツナは生育初期から土壌中に窒素肥料が多量にあれ ば旺盛に吸収するので、生育も旺盛になるが、体内に も硝酸態窒素が多量に蓄積する特性を持っていること がわかった. また、体内の硝酸態窒素量を減らすには 生育の初期から硝酸態窒素を減らすことが重要であり, 被覆肥料の利用は低減の一つの方策であることが確認 できた.しかし、この効果は低温下で大きいが、高温 下での効果はやや小さかった.

ここでは、コマツナ栽培における適正な被覆肥料の 使用法について、従来の知見および本研究の結果に基 づいて考察してみたい、建部ら(1995)は体内硝酸態 窒素濃度が施用窒素量に比例すると述べている、冬季 には有機態窒素の無機化は少なくなる(高橋・山室、 1992)ため、ある程度窒素コントロールは容易になる。 しかし、本節の結果のように低温下における被覆肥料 の利用は溶出が遅くなることや、春季に急激に溶出し

て生育に大きな影響を及ぼすことがあるので、上野ら (1991) が述べているように、被覆肥料の利用にあた っては、作物の窒素吸収パターンと地力窒素の影響を 考慮して使用することが望ましい.一方,夏作におい ては、土壌診断を行い基準量よりも少ない有機質配合 肥料を施用しても、夏季は硝酸態窒素濃度が低下しな いことが認められた(茨城県農業総合センター園芸研 究所, 2003). 本実験の結果から考えると、これは無機 化窒素量で施用量を決定していたことから、高温によ って有機態窒素が無機化し、予測を超えた無機態窒素 量になったものと考えられる. 近年は、土壌中の硝酸 態窒素のような無機態窒素だけでなく、 有機物からの 易分解性有機態窒素の吸収もあること (Nashlom ら, 1998; Okamoto ら, 2003) が報告されており、高温期に はそれらの無機化が顕著であるため、夏季の硝酸態窒 素濃度のコントロールが困難になっている.よって, 生産現場では作付け前の十壌中無機化窒素の他、無機 化する有機態窒素が含有されていることを考慮しなけ ればならない. また、加藤ら (2005) が報告している ように, 吸肥性が高い牧草等のクリーニングクロップ を作付けし、圃場外へ持ち出すことにより、土壌中の 窒素が極力少なくなる. その上で、施用肥料の特性が 反映され、窒素コントロールが可能になると考えられ る. コマツナでは生育初期から窒素の吸収が旺盛に行 われ、体内に蓄積する特性があることから、窒素が少 ない条件下における緩効性肥料の利用が体内硝酸態窒 素濃度の低下につながると考えられる.

コマツナでは過剰な窒素吸収が行われ、体内に蓄積 する特性があることから、体内の硝酸態窒素を減らす には施用する窒素の供給量を少なくする、あるいは作 物体が窒素を吸収する量が少ない品種を開発すること が肝要である.各作物における体内硝酸態窒素濃度と 品種との関係についてみると、香川(1997)はホウレ ンソウでは遺伝的に特定できるほどの差異は認められ ないと報告している.イネでは硝酸還元酵素の活性に おける遺伝子型間での変異が研究され(Barlaan・Ichii, 1996)、硝酸還元酵素の活性に品種間差はみられるが、 体内硝酸態窒素濃度とは関係ないと報告されている. 一方、飼料用トウモロコシ(原田ら、2001)では、硝 酸態窒素濃度に品種間差があることが報告されている. 塚澤(2002)はコマツナの水耕栽培で品種間差異を検 討し、チンゲンサイの交配種であるコマツナ品種'味

美菜'が供試した品種の中で最も硝酸態窒素濃度が低

く, 品種間差があることを報告している.

そこで、本研究では現在栽培されている品種の中で 吸収量の少ない品種が存在するのか、および体内の硝 酸態窒素が少ない品種の特性を明らかにするためにこ れらについて検討した.その結果、硝酸態窒素濃度が 低かった品種は'よかった菜'、'グリーンライト'、

(はづき)であり、硝酸態窒素濃度が高かったのは (あゆみ)と、せいせん26号)であった(第8図). 栽培条件が同じであったことから、コマツナ品種で体 内硝酸態窒素濃度には品種間差があることがわかった. ただし、品種選定では収量、味、外観も重視されるた め、これらの形質および硝酸態窒素濃度を考慮して品 種を決定することが望ましい.

一般に作物生産量と窒素吸収量には正の相関のある こと(和田ら、1968)が知られている.藤原ら(2005) は市販ホウレンソウについて外観と硝酸熊窒素濃度と の相関を調査し、生体重および葉色(SPAD 値)と硝 酸態窒素濃度が比例する傾向のあることを述べている. また、硝酸態窒素濃度が最も高かった'あゆみ'は草 姿がやや開帳性で、'よかった菜'は草姿が極立性であ り(第4表),光が硝酸還元酵素の活性を律速している こと(Lillo, 1994)を考えると立性は受光態勢が良いと 考えられる. また、建部 (1999) は葉柄と葉身では、 葉柄で硝酸態窒素濃度が高まると報告しているので、 葉身率が高いと硝酸態窒素濃度は低いと推察される. そこで、各品種の硝酸態窒素濃度と生育との相関関係 (第3表)をみた結果、本実験では調査項目との相関 関係が極めて低く、コマツナの硝酸態窒素濃度は生育 量や形態とは密接に関係していなかった.よって、生 育段階において肉眼による外観から硝酸態窒素濃度を 推測するのは難しいので、植物体内の硝酸態窒素濃度 を直接体内の硝酸態窒素濃度を測定して、その後の潅 水を多くするなどの管理方法を改善することが望まし

第5節 摘 要

夏季に栽培されたコマツナ体内の硝酸態窒素濃度が 高くなった要因を温度,日長などに着目して解明した ところ,夏季に栽培されたコマツナでは冬季のそれに 比べて,栽培温度が高く,積算日照時間短く,積算日 射量が多い条件で生育していた.夏季に栽培されたコ マツナでは冬季のそれに比べて,夏作の体内硝酸態窒 素濃度は,冬作を100とした場合に174%と高くなっ た.この要因として,夏作は栽培温度が高く,積算日

いと思われた.

射量が多いが、冬作よりも早く収穫に至り積算日照時 間が短い条件で生育するため、吸収された硝酸の硝酸 同化が不十分であることが関係していると推察された.

夏作では体内硝酸態窒素濃度が高いので、それを低 くするため緩効性肥料を施用したが、夏季には肥料の 無機化が早く、また窒素吸収量も多く、体内の硝酸態 窒素濃度を著しく軽減できなかった.しかし、被覆肥 料の溶出が温度の影響を受けるため、低温では溶出が 遅く、窒素吸収量が少なくなり体内硝酸態窒素濃度が 低下したが、窒素吸収が少なすぎたため生育の遅延が みられた.このことから被覆肥料は低温下で硝酸態窒 素濃度を低下させる一つの方策であることがわかった. さらに、夏作で体内硝酸態窒素濃度の品種間差異を 検討した結果、品種間差がみられ、供試した12品種の 中では'よかった菜'の硝酸態窒素濃度が著しく低く、 本節の1と2で用いた'楽天'よりも有意に低かった. なお、12品種の硝酸態窒素濃度と生育との相関関係を みたが、本実験の調査項目との相関関係は極めて低く、 コマツナの硝酸態窒素濃度は生育量や形態と密接に関 係していなかった.よって生育段階において肉眼によ る外観から硝酸態窒素濃度を推測するのは難しいので、 植物体内の硝酸態窒素濃度を直接体内の硝酸態窒素濃 度を測定して、その後の潅水を多くするなどの管理方 法を改善することが望ましいと思われた.

第2章 温度および潅水量の違いがコマツナの

生育・体内硝酸態窒素濃度に及ぼす影響

第1章において、夏季に栽培されたコマツナ体内の 硝酸態窒素濃度は冬季のそれに比べて、174%と高かっ た.作物体内の硝酸態窒素濃度は作物が受ける光の強 度に影響され、光強度が大きいと体内の硝酸態窒素濃 度が低くなる(中村、1983)ので、1日の日照時間が 長く、光強度も大きい条件で栽培される夏作では硝酸 同化は促進されていると考えられる.しかし、温度が 高いため栽培期間が短く、吸収された硝酸の硝酸同化 の時間(積算日照時間)が不十分であるために体内に 硝酸態窒素が残ったと推察した.

一方,光強度が大きい夏季において,コマツナは露 地および雨よけ栽培で行われている.播種前に十分な 潅水を行い,その後は潅水しない方法で栽培されてい る.その理由は潅水すると徒長し,収穫後の日持ちが 悪くなるので,収穫後半は潅水しない.よって,夏作 では収穫後期に体内の水ポテンシャルが低下する条件 となり,Sugiyamaら(1999)は水分ストレスを与えた ホウレンソウでは葉中の硝酸濃度が上昇することを報 告している.このことから,コマツナでも潅水できな いような畑では,土壌の乾燥が続くと水分ストレスを 受け,その濃度は高くなると推察される.

水分ストレスを受けた植物体では、体内の水ポテン シャルが低下し、気孔が閉鎖して蒸散が停止する. 硝 酸は重要な浸透圧調節物質であり(McIntyre, 1997), 水が溶媒となって移動していること(秋山・有馬, 1995) から、根から吸収された硝酸は浸透ポテンシャルを高 めるため使われるので、水ストレスを受けた植物体で は還元されることなく葉柄や葉に蓄積すると推察され る.

また、還元された硝酸は亜硝酸を経てアンモニアと なり、光合成の同化産物である糖が変換された有機酸 と結合してアミノ酸を合成する(榊原・杉山、1997). 硝酸態窒素濃度は光合成を活発に行っている午前中が 高く、午後に低下することが知られている(山下,2004). すなわち、午前中は蒸散作用によって水と一緒に硝酸 は移動し、同化作用によって生産された糖から変換さ れた有機酸と結合して代謝されるので、午後に硝酸態 窒素濃度は低下すると推察される.よって、硝酸の還 元と光合成の同化作用のいずれかが不足すれば硝酸として体内に残留すると考えられる.

以上のことから,温度の高低,土壌の乾湿は蒸散速 度と光合成速度に影響し,これらの作用が硝酸態窒素 濃度に密接に関係していると考えられる.しかし,光 合成や蒸散量に着目して硝酸態窒素濃度と光合成速度, 蒸散量との関係を検討した報告例は少ない.

そこで、夏作におけるコマツナの体内硝酸態窒素濃 度が高い要因を温度と潅水量に着目して検討した.す なわち、第1節では、温度がコマツナの生育および体 内硝酸態窒素濃度に及ぼす影響を調査し、第2節は、 栽培温度や潅水量を変えたときのコマツナの作物体内 の硝酸態窒素濃度と葉の光合成速度、蒸散量との相互 関係について検討を行った.

第1節 温度の違いがコマツナの生育 および作物体内硝酸態窒素濃 度に及ぼす影響

夏作におけるコマツナの体内硝酸態窒素濃度が高い 要因を温度に着目して検討し、温度がコマツナの生育 および体内硝酸態窒素濃度に及ぼす影響を調査した.

材料および方法

供試品種にはコマツナ・楽天・を用い、培養土を入れ たプラスチックプランターに2005年8月1日に播種し た.試験区は屋外型ファイトトロンを4室利用し、フ ァイトトロンの設定温度を変え、16℃(以下、I区)、 20℃(以下、II区)、24℃(以下、II区)および28℃(以 下、IV区)の4区とした.各処理区には3プランターを 設置し、実験に供試した.培養土は砂、バーミキュラ イトおよびピートモスを3:1:1(容積比)に混合したも のを用い、水分の流亡を防止するためにポリシートを 内面に貼ったプラスチックプランター(上底550×155 mm、下底530×135 mm,深さ110 mm)に培養土を9L 充填した.培養土には、プランター当たり硝燐安加里 (N16%、P₂O₅ 10%、K₂O14%)12.2g、熔燐(P₂ O₅ 20%) 3.7g をそれぞれ混和して施用した.播種 は条間5cm,株間3cmの間隔で1穴当たり2粒ずつ 点播した.播種前および栽培期間中,如露で適宜潅水 し,播種10日後にプランター内で均一な株を残すよう に間引きを行い、1穴1株立ちとなるようにした.

調査は、最も生育が早かった区の草丈が25 cm に達し た播種 30 日後(8月31日)の午前9時から一斉に行 い,新鮮重,最大葉長,乾物重当たりの硝酸態窒素濃 度と新鮮重当たりの硝酸熊窒素濃度を測定した.まず、 1株当たりの新鮮重および最大葉の葉長を調査し、そ れらの個体を直ちに80℃で48時間乾燥を行い、その 後に乾物重当たりの硝酸態窒素濃度を測定した. 硝酸 態窒素濃度の測定(日本土壌協会, 2001)は、Cataldo ら(1975)の方法を用いた. すなわち, コマツナ乾物 を磨砕し粉体とし、試料として粉体 100 mg を試験管 にとり、10 mLの水を添加し、45℃の湯浴中に試験管 を1時間静置したものを分析試料溶液とした. 試料溶 液 50 µLに5%サリチル酸-硫酸液 200 µL を加え, 20 分間静置した後,2M水酸化ナトリウムを5 mL 添加し 撹拌した. 試料溶液が室温に下がった後,410 nm の吸 光度を分光光度計システム(U-3210,日立製作所)で 測定した.また、5%サリチル酸-硫酸液の代わりに濃 硫酸を用いて比色を行い、同条件で測定しブランク値 として試料の吸光度から差し引き, 硝酸態窒素濃度

(mg・kg⁻¹DW)とした.一方,新鮮株の硝酸イオン 濃度測定には、小型反射式光度計システム RQ フレッ クス 2 (関東化学)を用いた.すなわち、コマツナ葉 (葉身および葉柄)に蒸留水を 30 ml 加え、ホモジナ イザー(日本精機製作所、回転数 10000 rpm で 3 分間) で粉砕し、その 0.5 g を試料とした.試料に蒸留水を 2.0 ml 加え、遠心力 6400 ×g、20℃の条件で 20 分間遠 心分離し、その上澄み液の硝酸イオン濃度を小型反射 式光度計システム RQ フレックス 2 (関東化学)で測 定した.硝酸イオン濃度は硝酸態窒素濃度(mg・kg⁻¹ FW)に換算して示した.

結果

ファイトトロン内の各区における1日の温度推移を みると(第9図),各区とも設定温度の±2℃で推移し, I区(低温区)は14-18℃,Ⅱ区(低中温区)は18-22℃, Ⅲ区(高中温区)は22-26℃およびⅣ区(高温区)は 26-30℃であった.

播種30日後のコマツナの生育を第10図に示した. コマツナの新鮮重は、低温のI区およびII区の差はな く、III区、IV区の高温になるほど減少した. 草丈はI 区、II区およびIII区の相違はなかったが、IV区の高温 区で大きく、徒長していた.

凡例はファイトトロンの区を示す

次に、体内の硝酸態窒素濃度をみると(第11図)、 新鮮重から RQ フレックスで測定した硝酸態窒素濃度

(第11図A)は低温のI区が低く、中温のⅡ区とⅢ区 は処理間で違いがなかったが I 区より高く、高温のIV 区は最も高くなったことから,温度に比例して硝酸態 窒素濃度が高くなる傾向を示した.一方,乾物から測 定した体内硝酸態窒素濃度(第11図B)も, RQフレ ックスで測定した硝酸態窒素濃度と同様の傾向を示し, 生育温度と硝酸態窒素濃度は正の相関関係(r=0.712) が認められた.よって、生育温度が高くなると生育量 は減少し、体内の硝酸態窒素濃度が高くなることがわ かった. また、本実験の温度範囲では 1℃生育温度が 上昇すると46.0 mg・kg⁻¹ FW の硝酸態窒素濃度が高 くなることがわかった.なお. I 区とIV区の硝酸態窒 素濃度の差は、乾物から測定した場合が 1646 mg・kg ⁻¹ DW で, RQ フレックスで測定した場合が 552 $mg \cdot kg^{-1}$ FW で、新鮮重のそれよりも処理間の差は 小さかった.

第2節 栽培温度や潅水量を変えたと きのコマツナの作物体内の硝 酸態窒素濃度と葉の光合成速 度、蒸散量との相互関係

高温期にコマツナの体内硝酸態窒素濃度が高い要因を明らかにするため、栽培温度や潅水量を変えたときのコマツナの作物体内の硝酸態窒素濃度と葉の光合成速度、蒸散量との相互関係について検討を行った.

材料および方法

コマツナ品種には、楽天、を供試した. プラスチック プランター (内面にポリシートを貼付)のサイズ,培 養土の資材,混合比,用量は実験1と同じとしたが, 施肥量を第1節の2倍とし,プランター当たり硝燐安 加里 (N16%, P₂O₅ 10%, K₂O14%) 24.5g,熔燐 (P₂O₅ 20%)7.5gを施用した. 播種前にすべてのプ ランター内に2Lの潅水を行い,その後,プランター 表面に黒色ポリマルチ (厚さ 0.02 mm)を展張した. 播種は2006年8月30日に行い,条間5 cm,株間3 cm の間隔で1穴当たり2粒ずつ点播した. 播種したプラ ンターは18-22℃ (以下,低温区)および26-30℃(以 下,高温区)に設定された屋外型ファイトトロンに移 動し栽培を行った.播種10日後にプランター内で均一 な株を残すように間引きを行い,1穴1株立ちとなる ようにした. 播種 15 日後から潅水処理を行った. すな わち,低温区における少潅水区は2 mL/株/day,中潅 水区は4 mL/株/day,多潅水区は6 mL/株/dayとし, 高温区における少潅水区は5 mL/株/day,中潅水区は 10 mL/株/day,多潅水区を15 mL/株/dayとし,潅水 方法は駒込ピペットで株元に行った.

調査は、最も生育が早かった区の草丈が25 cm に達 した播種後37日目(10月6日)の午前9時から12時 までに行った.まず,光合成速度などを測定した.第 3葉または第4葉(外側から3,4枚目)を用いて、携 帯式光合成蒸発散測定装置(LI-6400, LI-COR 社)で行 った. それぞれの温度について CO2濃度 350 µmol・ mol⁻¹,光強度 1500 µmol·m⁻²·s⁻¹の条件で測定した.次 いで、各区の株を採取し、株の新鮮重および葉色を測 定した. 葉色の測定には, 葉緑素計 (SPAD-502, ミノ ルタ社)を用いて第3葉を調査した.また、水ポテン シャルの測定にはプレッシャーチャンバー法(石原・ 平沢、1985)を用い、植物体内水分張力測定器 (DIK-PC40, 大起理化工業) で第3葉を測定した. そ の後に、それらの株を80℃で48時間乾燥し、第1節 と同様に Cataldo ら(1975)の方法を用い体内硝酸態 窒素を測定した.得られた新鮮重,乾物重,硝酸態窒 素濃度のデータを用いて、温度および潅水量の主効果 とその交互作用を分散分析で解析した.

結果

第1節で生育量および硝酸態窒素濃度に相違があっ たII区とIV区の温度を選び、これらの温度区で潅水量 を変えた3区を組み合わせて6区を設け、温度および 潅水量の違いがコマツナの新鮮重, 乾物重, 硝酸態窒 素濃度に及ぼす影響を実験し、その結果を第6表に示 した.新鮮重は温度および潅水量に主効果が認められ、 低温区の新鮮重は高温区のそれよりも大きく、潅水量 が多くなるほど新鮮重が大きくなった. 乾物重は温度 のみに主効果が認められた. 潅水量は低温区の3区で 乾物重の相違がなく潅水量の主効果は認められなかっ たが、高温区では多潅水区が少潅水区にくらべて大き かった.一方, 乾物当たりの体内硝酸態窒素濃度は, 温度および潅水量に主効果が認められた. 体内の硝酸 熊窒素濃度は高温区が低温区よりも、また少潅水区が 多潅水区よりも高くなった. なお、新鮮重など全ての 調査項目において、交互作用は認められなかった.

攵	理	新鮮重	乾物重	硝酸態窒素濃度				
温度	潅水量	(g)	(g)	$(mg \cdot kg^{-1}DW)$				
高	少	2.6	0.23	14153				
高	中	3.8	0.28	12910				
高	多	8.0	0.53	11919				
低	少	10.3	0.78	13708				
低	中	14.3	0.88	11108				
低	多	18.9	1.16	9738				
分散	分析 ^z							
温度	(A)	** ^y	**	**				
潅水量	量 (B)	*	NS	**				
A×]	В	N S	NS	N S				

第6表 温度および潅水量の違いがコマツナの 休内硝酸能突素濃度に及ぼす影響

^{2*,**}はそれぞれ5%,1%で有意差あり

△:高温・中潅水区 ▲:低温・中潅水区
 □:高温・少潅水区 ■:低温・少潅水区

次に、光合成速度(P)、蒸散速度(T)、水利用効率 (P/T) および水ポテンシャルと乾物当たりの体内硝酸態窒素 濃度との関係を第12,13,14,15 図に示した. 両温度区 ともに光合成速度が高くなると硝酸態窒素濃度が低下 し、光合成速度と硝酸態窒素濃度との間には負の相関 関係が認められた. 温度別にみると、少潅水区におけ る光合成速度と硝酸態窒素濃度に温度の相違はなかっ たが、多・中潅水区においては温度の相違があり、光 合成速度は低温区で高かった(第12 図).

蒸散速度は両温度区ともに蒸散速度が高くなると硝 酸態窒素濃度が低下し,光合成速度と同様に蒸散速度 と硝酸態窒素濃度との間には負の相関関係が認められ

そこで、水利用効率をみると(第14図)、両温度区 とも水利用効率が高くなると硝酸態窒素濃度が高くな る傾向を示した.中・多潅水区では水ポテンシャルが 高く、蒸散速度が大きくなるため、水利用効率が低か った.

さらに、水ポテンシャルをみると(第15図)、両温 度区ともに水ポテンシャルの低下に伴って硝酸態窒素 濃度が高くなった.温度別に比較すると、低温区の多・ 中潅水区では高温区のそれらに比べて、硝酸態窒素濃 度は低くなった.

第3節 考 察

コマツナの生育への温度の影響は、第1節の新鮮重 をみると、低温のI区およびII区の差はなく、III区、 IV区の高温になるほど減少した(第10図).小田・大 野(1980)は平均気温が22℃までは気温に比例して乾 物重が大きくなると報告しているが、本実験では低温 のI区(14~18℃)およびII区(18~22℃)の差はな かったので、生育量から判断するとコマツナの生育適 温は14~22℃であると考えられた.また、温度が高く なると草丈は高くなった(第10図).14~22℃で生育 したI区とII区の株の新鮮重は大きかったが、これは 葉長が長くなったのではなく、1枚の葉重が大きくな ったことが要因であると推察される.

温度と体内硝酸態窒素濃度との関係を二つの測定方 法で比較してみたが(第11図),両測定方法とも温度 に比例して大きくなる傾向がみられた.よって,生育 温度が高くなると生育量は減少し,体内の硝酸態窒素 濃度が高くなることがわかった.作物生産量と窒素吸 収量との間には正の相関があることが知られている (和田ら,1968)が,本実験の結果では生育量の旺盛

な区ほど体内硝酸態窒素濃度が低かった. 本実験では

光強度が大きく,積算日照時間が同じ条件で行ったが, 生育適温で生育した植物体では葉面積や葉重が大きく なり,これに伴って硝酸同化が活発に行われたことに より,硝酸態窒素濃度が低下したと推察された.

なお、I区とIV区の硝酸態窒素濃度の差は、乾物か ら測定した場合が1646 mg・kg⁻¹ DW で、RQ フレッ クスで測定した場合が552 mg・kg⁻¹ FW で、新鮮重 のそれよりも処理間の差は大きくみえるが、RQ フレ ックスで測定した場合は体内の水分率が異なるためで、 収穫から測定するまでの時間や光の影響を受けるため、 乾物から測定する Cataldo 法が有効であると考えられ たので、第2節では後者の測定で硝酸態窒素を測定し た.

夏季における生育量は温度だけでなく潅水量の多少 でも変化するので、第2節では潅水量および温度の影 響を検討した. その結果, 新鮮重および乾物重ともに 温度に主効果が認められ、第1節と同様に温度が高く なると生育量は低下する傾向を示した(第6表).また, 新鮮重は潅水量にも主効果が認められ、潅水量が少な いと新鮮重が低下する傾向が認められた(第6表).多 くの植物で蒸散量と光合成速度が比例関係にあること (津野, 1975)や、気孔の閉鎖に伴い光合成・蒸散速 度が低下すること(伊藤, 1994). また, 潅水が不足す ると根圏の水分が減少し、気孔が閉じ蒸散速度が低下 する (Davis · Zhang, 1991; Otoo ら, 1989) こと, 葉の 水ポテンシャルが低下する(Kobata・Takami, 1989)こ とが報告されている. そこで, 高温・乾燥で新鮮重が 低下した要因を解析するため、作物体の光合成速度、 蒸散速度,水ポテンシャルを測定した,その結果,適 温下におかれた場合(低温区)において、多潅水区で は蒸散速度が光合成速度に比べて大きいため水利用効 率は低下するが,蒸散速度および光合成速度が大きく, 水ポテンシャルが高いため新鮮重が大きくなった. 少 潅水区では水ポテンシャルの低下と気孔の閉鎖に伴い 蒸散量速度および光合成速度は低下したので、新鮮重 が多潅水区よりも小さくなった.一方, 適温以上の高 温区では、多潅水にすると光合成速度が高くなるが、 蒸散量速度も大きくなり,水利用効率が著しく低下し, 新鮮重が小さくなった. さらに、少潅水にすると光合 成速度, 蒸散速度は低下し, 新鮮重が著しく小さくな った. よって、コマツナの新鮮重や乾物重は体内の水 ポテンシャル、蒸散速度や光合成速度、水利用効率が 関与するが、蒸散・光合成作用が十分に行われ、葉の 水ポテンシャルが高く保てるような条件で生育量が大

きくなり,夏季の高温・乾燥条件では蒸散・光合成作 用が不十分で,また葉の水ポテンシャルが低いため生 育量が小さくなった.

次に、本実験の結果から、乾物当たりの体内硝酸態 窒素濃度は、温度および潅水量に主効果が認められ、 高温区が低温区よりも、また少潅水区が多潅水区より も高くなった(第6表). 光合成によって同化産物とし て生成され、硝酸の代謝に関与していること(榊原・ 杉山、1997)から、光合成速度を増大させることは硝 酸態窒素の代謝の促進につながる.一方、水ポテンシ ャルが低下すると硝酸還元酵素の活性が低下し硝酸が 葉内に集積すること(堀口, 1987, Sugiyama ら, 1999) が報告されている. そこで, 作物体の光合成速度, 蒸 散速度,水ポテンシャルと硝酸熊窒素濃度との関係を 調査した.その結果,少潅水区では多潅水区に比べて、 蒸散速度、光合成速度および水ポテンシャルが低下し た、また、蒸散速度および光合成速度と硝酸態窒素濃 度には負の相関が認められた(第12,13図).また,堀 口(1987)の報告と同様に水ポテンシャルが低下する と硝酸態窒素濃度は高くなる傾向がみられ(第15図), 少潅水区では硝酸還元酵素の活性が低下し体内硝酸態 窒素濃度が高くなったと推察される.

一方,水分ストレスを与えたホウレンソウでは葉中 の硝酸濃度が上昇すること(Sugiyama ら, 1999),硝 酸は重要な浸透圧調節物質であり(McIntyre, 1997), 水が溶媒となって移動していること(秋山・有馬, 1995) が報告されている.これらの報告と本実験の結果を合 わせて考えると,作物体が生育適温におかれ,土壌・ 体内の水ポテンシャルが高く,光合成・蒸散が行われ ているような状態であれば,蒸散流にのって硝酸態窒 素は葉に散在し,光による硝酸の還元と同化過程を経 て,硝酸態窒素濃度は低くなる.しかし,土壌・体内 の水ポテンシャルが低く,光合成や蒸散が少ないと体 内での硝酸態窒素の還元が起こりにくくなり,体内の 硝酸態窒素濃度は高くするが,この濃度を高くするこ とで浸透圧調整を行い,給水を促進する態勢を調えて いると考えられる.

これらのことから,夏作におけるコマツナの体内硝酸 態窒素濃度が高いのは,高温乾燥によって体内の水ポ テンシャルが低下し,これに伴って蒸散速度が低下す るが,このことによって硝酸態窒素が蒸散流にのって 導管内を移動できないために,葉柄や葉身に蓄積する と考えられた.

第4節 摘 要

栽培温度や潅水量を変えたときのコマツナの作物体 内の硝酸態窒素濃度,葉の光合成速度,蒸散量との相 互関係から,夏作におけるコマツナの体内硝酸態窒素 濃度が高い要因の検討を行った.

異なる温度条件で栽培したときの新鮮重および乾物 重から、コマツナの生育適温は14~22℃であると考え られた. 22℃以上の温度下では生育量が低下し、体内 の硝酸態窒素濃度が高くなった.

次に、潅水量および温度の影響を検討したところ、 潅水量の増大に伴い新鮮重の増加と体内硝酸態窒素濃 度の減少が認められた.また、体内の硝酸態窒素濃度 は高温区が低温区よりも高くなった. 潅水量の増加に 伴い蒸散速度、光合成速度および水ポテンシャルが大 きくなった.さらに、蒸散速度および光合成速度が高 くなると硝酸態窒素濃度が低下し、蒸散速度および光 合成速度と硝酸態窒素濃度との間には負の相関関係が 認められた.

体内の硝酸態窒素濃度は生育温度が高く、潅水量が 少なくなると高くなった.生育適温であれば潅水量の 増大に伴い、蒸散速度、光合成速度が大きくなり、新 鮮重の増加と体内硝酸態窒素濃度の減少が認められた. 一方、夏作では高温・乾燥条件となるが、このような 条件では体内の水ポテンシャルが低下し、蒸散速度と 光合成速度が小さくなるので、乾物重は小さく、体内 の硝酸態窒素濃度は高くなった.これらのことから、 夏作におけるコマツナの体内硝酸態窒素濃度が高いの は、高温乾燥によって体内の水ポテンシャルが低下し、 これに伴って蒸散速度が低下するが、このことによっ て硝酸態窒素が蒸散流にのって移動できないために葉 柄や葉身に蓄積すると考えられた.

第3章 ポストハーベストにおけるコマツナ体内

硝酸態窒素濃度低減技術の開発

夏作は硝酸態窒素濃度が高いが、品種の選定、緩効 性肥料の利用、多潅水によって、その濃度をある程度 までに低減できることが分かった(第1章,第2章). しかし、高温期は施与する施肥量が少なくても、土壌 中における有機態窒素の無機化窒素発現量が低温期よ りも多く、コマツナの窒素吸収量が過剰になり(第1 章)、体内の硝酸態窒素濃度が高くなると考えられる. よって、前作の影響で窒素が残留している、あるいは 潅水できない畑では、高温期の土耕栽培において硝酸 態窒素濃度を低下させることはかなり難しい.

一方,ブロッコリーでは収穫した花らいに弱光を照 射して保存すると,花らい内の水分が減少して品質は 低下する(久保ら,2002)が,弱光,低温,微細孔フ イルム包装を組み合わせて保存した場合は,光合成に よって緑色が維持され,品質低下を抑制できることが 知られている(久保ら,2003).

養液栽培のホウレンソウにおいては、生育後期に培 養液中の硝酸態窒素濃度を低減させることにより、作 物体の硝酸態窒素含量が低下すること(張ら、1990; 岩 田、1971)、さらに、収穫10日前に窒素を含まない培養 液あるいは栄養成分を含まない地下水に替えることに より、その濃度が75~90%低下することが報告されて いる(王・伊藤、1997; 吉田ら、1998).

久保ら(2003)の報告と王・伊藤(1997)および吉 田ら(1998)の報告とを考え合わせると、収穫後の保 存期間中に硝酸態窒素を含まない水を供給しながら、 低温・弱光およびフイルム包装を行うことによって、 土耕栽培した作物でも品質を損なうことなく、作物体 内の硝酸態窒素濃度を低下させることが可能であると 思われる.

第1節 弱光照射および給水処理がコ マツナの品質に及ぼす影響

収穫後にフイルム包装したコマツナへの弱光照射お よび給水処理が、コマツナの新鮮重、葉色、葉内アス コルビン酸濃度およびフイルム内ガス濃度に及ぼす効 果を検討した.

材料および方法

供試品種にはコマツナ 'あやか'を用い, 4月15日

にパイプハウス内に播種した. 施肥は基肥のみとし、 硝燐安加里 (N16%, P₂O₅ 10%, K₂O14%) 6.3 kg・ a⁻¹, 熔燐 (P₂O₅ 20%) 1.9 kg・a⁻¹を施用した. 実 験に供試した株(新鮮重:24g程度, 葉長:27 cm程度) は、6月4日に収穫した後、直ちに根部に付着した土 を除去し、根切りをしないものを5~6葉に調整したも のを用いた.処理区は弱光照射の有無(以下弱光照射 区を明区,暗黒区を暗区とする)および根部への給水 処理の有無を組み合わせて4処理区を設けた.保存庫 内の温度は 7℃とし、明区では蛍光灯による連続照射 を行い,照度を 250~400 k(光合成有効光量子束密 度: PPFD 2.85~4.56 µmol・m⁻²・s⁻¹) とした. 給水処 理はプラントボックス(60×60×100 mm)に株を立てて 置き,根部のみを水に浸漬し,容器ごとに微細孔フイ ルム袋(住友ベークライト社,容量1.2L,厚さ0.020mm, 30-100µm の微孔が開いたもの) で密封した.

保存開始時および保存2日後,4日後,6日後に新鮮 重,葉色および還元型アスコルビン酸濃度を調査した. 葉色の調査には葉緑素計(SPAD-502、ミノルタ社)を 用いた. アスコルビン酸濃度 (建部・米山, 1995) は, コマツナ葉(葉身および葉柄)を乳鉢で磨砕し、この うち0.2gを試料として用い、試料に5%メタリン酸水 溶液 1.3 mL を加え、遠心力 14000 ×g、10℃の条件で5 分間遠心分離し、その上澄み液を小型反射式光度計シ ステム RQ フレックス2(関東化学)で測定した. さらに、フイルム包装内のヘッドスペースガスをガス タイトシリンジで 100 µL 抜き取り, 酸素および二酸化 炭素濃度をガスクロマトグラフィー (GC-7A, 島津製 作所)で測定した.カラムは,酸素濃度測定には Molecular Sieve 5A (ジーエルサイエンス, 1 m×3 mm ID, カラム温度 50℃)、二酸化炭素濃度測定には Sunpak-A (島津製作所, 2.1 m×3.2 mm ID, カラム温度 50℃)を 使用した. キャリアーガスには、He (流速 50 mL・min ⁻¹)を,検出器にはTCD(温度100℃)を用い,測定 結果を%で示した.

結果

コマツナの保存開始時の新鮮重に対する保存 2,4 および6日後の新鮮重の重量比率を第16図に示した. 給水処理をしなかった両区では保存後から新鮮重が減 少し、萎れが観察された.特に、明区で減少程度が大 きく、保存2日後には保存開始時に比べてほぼ10%減 少した.給水処理しなかった両区は入庫6日後には褐 変し一部が枯死したので、調査はできなかった(デー タ省略).一方、給水処理した両区では保存後から保存 4日後まで新鮮重が増加した.保存6日後の新鮮重の 重量比をみると、明区でやや低下したが、暗区は減少 しなかった.

次に,葉の緑色(SPAD 値)の変化をみると(第17 図),給水処理をしなかった両区では保存開始時よりも 大きくなった.一方,給水処理をした明区では保存開 始時からやや増加し,暗区のそれは保存開始時よりも やや小さくなった.明区と暗区とを比較すると,給水 処理の有無に関わらず,SPAD 値は明区で暗区よりも やや大きくなった.

さらに、アスコルビン酸濃度をみると(第18図), 給水処理をしなかった両区では保存後も減少しなかっ た.一方,給水処理した明区と暗区では,保存4日後 に保存開始時に比べて,ほぼ25%減少した.

袋内における保存開始時からの酸素および二酸化炭 素濃度の変化を第19図に示した.給水しなかった両区 では保存12時間後に二酸化炭素濃度が0.5%まで増加 し,酸素濃度は20%であった.保存60時間後までは 両区で差異がなかったが,60時間を超えると両区で相 違がみられるようになり,暗区では二酸化炭素濃度が 0.5%,酸素濃度が19~20%でほぼ保存12時間後と同 じであったが,明区では二酸化炭素濃度は0.1~0.2% まで減少し,酸素濃度はほぼ21%と高くなった.一方, 給水処理した両区でも保存12時間後に二酸化炭素濃 度が0.5~0.6%まで増加し,酸素濃度は20%であった が,保存60時間を超えると両区で相違がみられ,暗区 では二酸化炭素濃度が0.8~1%まで増加し,酸素濃度 が19%まで減少したが,明区の二酸化炭素濃度はほぼ 0.5%,酸素濃度はほぼ20%であった.

第16図 弱光照射および給水の有無が保存中のコマツナ新鮮重に及ぼす影響(保存開始時に対する割合) 図中の縦線は標準誤差を示す

第17図 弱光照射および給水の有無が保存中のコマツナの葉色に及ぼす影響 図中の縦線は標準誤差を示す

第18図 弱光照射および給水の有無が保存中のコマツナ葉中還元型アスコルビン酸濃度に及ぼす影響 図中の縦線は標準誤差を示す

第19図 給水処理がフイルム包装内の酸素および二酸化炭素濃度に及ぼす影響 図中の縦線は標準誤差を示す

第2節 コマツナへの弱光照射および 保存温度の相違が体内の硝酸 態窒素濃度に及ぼす影響

収穫後に給水しながらフイルム包装したコマツナの 弱光照射および保存温度の違いが、体内硝酸態窒素濃 度に及ぼす影響を調査した.

材料および方法

供試品種にはコマツナ '楽天'を用い、4月30日に パイプハウス内に播種した.施肥は基肥のみとし、硝 燐安加里 (N16%, P₂O₅10%, K₂O14%) 6.3 kg・ a^{-1} , 熔燐 (P₂O₅20%) 1.9 kg・ a^{-1} を施用した. 6 月 16日に収穫した後,実験1と同様に調整した株(新 鮮重: 27 g程度,葉長: 28 cm 程度)を供試した.処理 区は弱光照射の有無および保存温度の違い(7℃および 14℃)を組み合わせて4処理区を設けた.全ての区は 給水処理を行い,株の設置方法,使用したフイルム袋, 明区の照度は第1節と同じとした.

保存開始時および保存終了時(保存4日後)に葉色, 新鮮重ならびに株全体(根部を除く),葉柄および葉身 中の硝酸態窒素濃度を調査した.葉色の測定は実験1 と同じ方法で行った.硝酸態窒素濃度(建部・米山, 1995)は、コマツナ葉(葉身および葉柄)に超純水を 加え(20~50 mL)、ホモジナイザー(日本精機製作所、 回転数10000 rpm で3分間)で粉砕し、その0.2~0.5 g を試料とした. 試料に超純水を1.0~1.3 mL 加え、遠 心力6400×g、20°Cの条件で20分間遠心分離し、その 上澄み液の硝酸イオン濃度を小型反射式光度計システ ム RQ フレックス 2(関東化学)で測定した. 硝酸イ オン濃度は硝酸態窒素濃度(mg・kg⁻¹FW)に換算して 示した.

結果

保存終了時(保存4日後)における新鮮重は保存開 始時のそれに比べて,全ての処理区で増加し,その増 加割合は7℃区に比べ14℃区でやや大きかった(第7 表).また,いずれの保存温度でも光照射の有無による 新鮮重の差は無かった.保存温度にかかわらず明区の SPAD 値は暗区のそれに比べて有意に大きくなった.

次に、株全体の硝酸態窒素濃度をみると(第20図), 全ての処理区において保存開始時に比べ低下した.特 に、14℃・明区が最も低く、約36%減少した.そこで、 葉柄と葉身に分けて測定したところ、葉柄の硝酸態窒 素濃度は全ての区で減少したが、葉身のそれは明区で 減少し、暗区でやや増加する傾向を示した(第21図).

	NUNT TENO		に人は) 形音
処理区	保存温度	新鮮重 ^z	SPAD值 ^z
明	7℃	$108.30 \pm 0.71^{\text{y}}$	103.98 ± 1.62
暗	7℃	109.60 ± 1.09	97.95 ± 1.64
有意性 ^x		N S	*
明	14°C	112.50 ± 1.15	104.75 ± 1.97
暗	14°C	113.74 ± 1.68	97.13 ± 1.53
有意性		NS	*

第7表 弱光照射の有無および保存温度の違いがコマツナの 新鮮重および葉色(SPAD値)に及ぼす影響

²保存開始時を100としたときの保存終了時の変化の割合を示す

^y平均值±標準誤差

^xLSD検定により*は5%水準で有意差あり(P<0.05)

第20図 弱光照射の有無および保存温度の違いがコマツナの地上部中の 硝酸態窒素濃度に及ぼす影響(保存4日後) 図中の縦線は標準誤差を示す

第21図 弱光照射の有無および保存温度の違いがコマツナの部位別の 硝酸態窒素濃度に及ぼす影響(保存4日後)

第3節 弱光・給水・冷蔵保存したコ マツナの葉位別の硝酸態窒素 濃度の変化

フイルム包装して弱光照射・給水処理し、冷蔵保存 したコマツナの葉位別硝酸態窒素濃度を調査し、体内 の硝酸イオンの動態を検討した.

材料および方法

供試品種にはコマツナ '楽天'を用い、3月14日に パイプハウス内に播種した.施肥は基肥のみとし、硝 燐安加里 (N16%, P_2O_5 10%, K_2O14 %) 7.5 kg・ a^{-1} , 熔燐 (P_2O_5 20%) 2.3 kg・ a^{-1} を施用した. 4 月 24日に収穫した後,直ちに根部に付着した土を除去 し、4 葉に調整した株 (新鮮重: 23 g 程度,葉長: 25 cm 程度)を供試した.処理区には明区と暗区 (対照区) とを設けた.保存庫内の温度は 7℃とし、明区は実験 1と同じ条件で弱光照射処理を行った.給水処理は両 区とも行い、円筒瓶(ϕ 25×150 mm)に株を立てて置き, 根部のみを水に浸漬し、容器ごと第1節と同様のフイ ルム袋で密封した.また,袋内の湿度を保つため、株 を入れない瓶に水を入れ、同時に処理株とともに密封 した.

保存開始時および保存5日後,10日後,15日後に各 葉位の葉(株の外側の葉から第Ⅰ葉,第Ⅱ葉,第Ⅲ葉) を葉身と葉柄に分けた.第Ⅳ葉は小さかったため,株 から根および第Ⅰ葉,第Ⅲ葉,第Ⅲ葉を除いた残りを その他として扱った.各部位は80℃で48時間通風乾 燥を行い,乾物の硝酸態窒素濃度を調査した.硝酸態 窒素濃度の測定(日本土壌協会,2001)は、Cataldoら (1975)の方法を用いた.すなわち,乾物試料を磨砕 して粉体とし,それを試験管に100 mg入れ,10 mLの 水を添加した後,45℃の湯浴中に1時間静置したもの を分析試料溶液とした.試料溶液50 μLに5%サリチ ル酸-硫酸液200 μLを加え,20分間静置後,2M 水酸 化ナトリウムを5 mL添加し撹拌した.試料溶液が室 温まで下がった後に410 nm の吸光度を分光光度計シ ステム(U-3210,日立製作所)で測定した.また,5% サリチル酸-硫酸液の代わりに濃硫酸を用いて比色を 行い,同じ条件で測定しブランク値として試料の吸光 度から差し引き,硝酸態窒素濃度(mg・kg⁻¹DW)と した.

結果

地上部全体の硝酸態窒素濃度の推移を処理間で比較 してみると(第22図),両区の5日後までその濃度は 収穫時と変化なく推移し,保存10日後に収穫時の80 ~87%に低下した.保存10日後から15日後までの間 において両区において相違がみられ,暗区では10日後 と同じ濃度の75%であったが,弱光照射区は収穫時の 62%に低下した.

次に、保存中に硝酸熊窒素が低下した株内の部位と 保存10日から15日までの間における両区の相違を明 らかにするため、葉位間および部位間(葉身と葉柄) の硝酸熊窒素の推移を調査した (第8表). 収穫時の葉 位別の硝酸態窒素濃度は外側(第Ⅰ葉)で高く、次い で第Ⅱ葉<第Ⅲ葉<第Ⅳ葉(その他)の順であり、内 側ほど低くなった.また,第IV葉(その他)を除くい ずれの葉位とも、葉柄で葉身よりも大幅に高かった. 保存5日後には、両区とも収穫時に比べて、第1葉と 第Ⅲ葉ではほぼ同じかやや低下していたが、第Ⅱ葉で は収穫時に比べて著しく増加し、特に葉柄で増加程度 が大きかった.保存10日後になると、両区とも全ての 葉位で保存5日後に比べて硝酸態窒素濃度が低下した が, 第Ⅱ葉では収穫時に比べて著しく増加し, 特に葉 柄で増加程度が大きかった.保存10日後になると,両 区とも全ての葉位で保存5日後に比べて硝酸態窒素濃 度が低下したが、第Ⅱ葉では収穫時と同じかやや高い 値で維持された.このように,収穫後の硝酸態窒素は, 外側の外葉と内側の中心葉では早くから低下が始まる が、中側の中位葉では保存後一旦増加してから低下す ることが明らかになった.保存10~15日の期間の硝酸 態窒素濃度の変化を葉位別にみると、暗区の第 I 葉と 第Ⅱ葉では僅かに低下したが、第Ⅲ葉では低下しなか った.一方,明区では、いずれの葉位および部位でも、 この期間に硝酸態窒素が有意に低下した.特に、第Ⅱ 葉では葉身,葉柄ともに大幅に低下した.

第22図 弱光・給水処理したコマツナ^zの地上部中における体内硝酸態窒素濃度の推移 ^z根部を水に浸して,株全体をフイルム包装したものを7℃で保存した 図中の縦線は標準誤差を示す

葉位	保存日数	処理	硝酸態窒素濃度 ^z (mg・kg ⁻¹ DW)					
	(日後)		全位	本	葉	}	葉柞	丙
	収穫時	_	28570 a ^y	$(100)^{x}$	13672 a	(100)	44815 b	(100)
	5	明	30125 a	(105)	11089 b	(81)	50864 a	(113)
笠Τ荘	5	暗	20921 ab	(73)	6477 cd	(47)	34992 cd	(78)
舟 Ⅰ 枭	10	明	26423 bc	(92)	8237 c	(60)	43280 b	(97)
	10	暗	23101 c	(81)	6633 cd	(49)	40522 bc	(90)
	15	明	15263 d	(53)	4077 d	(30)	25071 e	(56)
	15	暗	18531 cd	(65)	5246 d	(38)	32998 d	(74)
	収穫時	—	19206 c	(100)	5323.2 c	(100)	30186 b	(100)
	5	明	29533 a	(154)	8327.7 a	(156)	46958 a	(156)
笛Π蛬	5	暗	25258 b	(132)	4360 c	(82)	41984 a	(139)
'nⅡ未	10 15	明	22191 bc	(116)	7165.8 ab	(135)	34260 b	(113)
		暗	18445 c	(96)	5723.5 bc	(108)	30423 b	(101)
		明	13304 d	(69)	3998.1 c	(75)	19521 c	(65)
	15	暗	18093 c	(94)	5163.2 c	(97)	29306 b	(97)
	収穫時		18908 a	(100)	5607.5 a	(100)	26958 a	(100)
	5	明	14620 b	(77)	3992.4 bc	(71)	21690 b	(80)
箆Ⅲ蓮		暗	19635 a	(104)	5126.5 ab	(91)	28095 a	(104)
	10	明	14277 b	(76)	4316.2 bc	(77)	20856 b	(77)
	10	暗	14386 b	(76)	4594.3 abc	(76)	20448 b	(76)
	15	明	10201 c	(54)	3461.5 c	(62)	13838 c	(51)
	10	暗	14635 b	(77)	4399.2 bc	(78)	21326 b	(79)
	収穫時		11421 a	(100)	—		—	
	5	明	11895 a	(104)	—		—	
伷	C	暗	11201 a	(98)	—		—	
	10	明	7054.5 b	(62)	—		—	
	10	暗	8110.4 b	(71)	—		—	
	15	明	6639.4 b	(58)	_			
	15	暗	7742.7 b	(68)	—		—	

第8表 弱光・給水処理したコマツナの葉位および部位別硝酸態窒素濃度の推移

^z平均值(収穫時n=10, 処理区n=5)

^ッ同葉位・同列の異なるアルファベット間にTukeyの多重比較法により

有意差あり (P<0.05)

*括弧内は同葉位・同列の収穫時との比を示す

第4節 数種野菜への弱光照射・給 水・冷蔵保存処理の適用性 の検討

収穫した作物を給水処理を行い、フイルム包装し、 弱光照射および冷蔵保存したときの、コマツナと同様 に夏季、体内硝酸態窒素濃度が高い数種野菜への適用 性を検討した.

材料および方法

サラダナ(Lactuca sativa L.) '岡山サラダ菜', チン ゲンサイ (Brassica campestris L. var. chinensis) '緑陽', ミズナ (Brassica rapa L. var. nipposinica) '早生千筋京 水菜'を供試し、7月8日にパイプハウス内に播種し た. 施肥は基肥のみとし、作付け前の土壌診断結果か ら硝燐安加里 (N 16%, P₂O₅ 10%, K₂O 14%) 2.7 kg・ a^{-1} , 熔燐 ($P_2O_520\%$) 0.2 kg・ a^{-1} を施用し, N 7.0 kg・ a^{-1} , P₂O₅7.0 kg · a^{-1} , K₂O 5.1 kg · a^{-1} となるよう施 用した.8月14日に収穫した後,直ちに根部に付着し た土を除去し、根切りをしないものを供試した. 処理 区には明区と暗区(対照区)とを設けた.保存庫内の 温度は14℃とし、明区は第1節と同じ条件で弱光照射 処理を行った. 給水処理は両区とも行い、プラスチッ ク容器内に 180 mL のマジカルビーズ (レンゴー,主 成分: セルロース)を詰め, プラスチック容器の中央に 収穫した株を立てて置き、根部のみをマジカルビーズ に埋設し、容器ごと第1節と同様のフイルム袋で密封 した(第23図を参照).

第23図 給水してフイルム包装したサラダナ, チンゲンサイおよびミズナの外観 左からサラダナ,チンゲンサイ,ミズナ

保存開始時および保存終了時(保存4日後)に葉色, 新鮮重,クロロフィル蛍光,硝酸態窒素濃度ならびに 還元型アスコルビン酸濃度を調査した.葉色および還 元型アスコルビン酸濃度の測定は第1節と,硝酸態窒 素濃度の測定は第3節と同じ方法で行った.また,通 風乾燥した収穫直後のサラダナ,チンゲンサイおよび ミズナ株は,硝酸態窒素を測定する前に根と地上部の 乾物重を測定しT/R比を算出した.クロロフィル蛍光 の測定には,小型クロロフィル蛍光測定器 (FluorPen-FP100, PSI 社)を用い,葉色の測定葉位と

同様にサラダナは第V葉, チンゲンサイは第Ⅲ葉, ミ ズナは第Ⅶ本葉をそれぞれ測定した.

結果

収穫時の外観をみると(第24 図), サラダナは草丈 が小さいものの株張りは大きかった.また,根部は主 根が少なく,側根が多かった(T/R 比 6.0). チンゲン サイでは草丈が大きいが株張りはサラダナよりも小さ く,根は主根が多く側根が少なかった(T/R 比 10.3). ミズナはサラダナとは反対に,草丈が大きいが株張り は最も小さく,根は主根と側根が同程度であった(T/R 比 12.2). T/R 比は,サラダがチンゲンサイおよびミ ズナよりも有意に小さかった(Duncan 検定, P<0.05, n=5).

保存終了時(保存4日後)における株の萎れおよび 腐敗は、いずれの供試した作物にもみられなかった(第 25a, b 図). 保存終了時の新鮮重は保存開始時のそれ に比べて、全ての作物および処理区で減少することは なかった. その増加割合はチンゲンサイで最も高く, 次いでミズナであり、サラダナは収穫時とほぼ同じで あった. 弱光照射の有無による新鮮重への影響は、い ずれの作物にもみられなかった (第9表). 保存終了時 の外観をみると(第26a, b, 27a, b, 28a, b 図), い ずれの作物も明区が暗区よりも葉の緑色が濃かった. そこで、葉色の指標である SPAD 値で比較すると(第 9表),いずれの作物も明区で増大し,暗区で低下した. 特に、チンゲンサイでは明区(109.8)での増加割合と 暗区(84.0)での低下割合の差が大きく,弱光照射は 葉色に及ぼす影響が大きかった. クロロフィル蛍光も 葉色と同様に全ての作物とも明区で増加し、暗区で低 下し、明区と暗区で有意差が認められた(第9表).

硝酸態窒素濃度をみると(第10表),いずれの作物 もフイルム包装および給水処理で減少する傾向がみら れたが、明区で収穫時よりも有意に低下し、特に、ミ ズナは明区で 19907 mg·kg⁻¹DW となり収穫時 (26307 mg·kg⁻¹DW) よりも 24%減少した. 収穫時 (8622 mg·kg⁻¹DW) に最も硝酸態窒素濃度が低かったサラダナ では、明区 (7526 mg·kg⁻¹DW) でも 13%しか減少 せず、暗区 (8402 mg·kg⁻¹DW) では変化がみられな かった. チンゲンサイでは暗区 (15770 mg・kg⁻¹DW) が収穫時 (17578 mg・kg⁻¹DW) よりもほぼ 10%減少 したが、明区 (14248 mg・kg⁻¹DW) では収穫時より も 19%低下した.

還元型アスコルビン酸濃度は(第10表),いずれの 作物でも収穫時と比較して明区では同等であったが, 暗区では収穫時よりも減少する傾向がみられ,サラダ ナの暗区(347 mg・kg⁻¹FW)は収穫時(442 mg・kg ⁻¹FW)と比較して78%に、ミズナの暗区(703 mg・ kg⁻¹FW)は収穫時(885 mg・kg⁻¹FW)の79%へと 有意に減少した.明区では硝酸態窒素濃度が減少して も、還元型アスコルビン酸濃度の減少が小さかった.

第24 図 サラダナ, チンゲンサイおよびミズナの収穫時の外観 左からサラダナ, チンゲンサイ, ミズナ 収穫後, 根から土を除去した

第25図 弱光・給水処理したサラダナ²、チンゲンサイ²およびミズナ²の外観
 ²根部を水に浸して、株全体をフイルム包装したものを14℃で4日間保存した
 a:明区(左からサラダナ、チンゲンサイ、ミズナ)
 b:暗区(左からサラダナ、チンゲンサイ、ミズナ)

第26図 弱光・給水処理したサラダナ^zの外観
 ²根部を水に浸して,株全体をフイルム包装
 したものを14℃で4日間保存した
 a:明区 b:暗区

第27図 弱光・給水処理したチンゲンサイ²の外観
 ²根部を水に浸して,株全体をフイルム包装
 したものを14℃で4日間保存した
 a:明区 b:暗区

第28図 弱光・給水処理したミズナ²の外観
 ²根部を水に浸して,株全体をフイルム包装
 したものを14℃で4日間保存した
 a:明区 b:暗区

作物名	処理区	新鮮重 ^z	SPAD值 ^z	クロロフィル蛍光 ^z
サラダナ	明	$100.91 \pm 1.17^{\text{y}}$	106.71 ± 3.48	103.34 ± 1.03
9777	暗	100.81 ± 0.97	92.29 ± 3.01	94.63 ± 1.79
有意性 ^x		NS	* *	* *
チンゲンサイ	明	109.90 ± 0.79	109.79 ± 5.85	102.25 ± 1.07
	暗	111.43 ± 1.77	83.99 ± 5.55	94.26 ± 1.39
有意性 ^x		NS	* *	* *
ミズナ	明	105.59 ± 0.40	$104.07 \hspace{0.2cm} \pm \hspace{0.2cm} 2.06$	102.33 ± 1.14
	暗	104.97 ± 0.74	94.71 ± 1.39	87.24 ± 4.31
有意性 ^x		NS	* *	*

第9表 フイルム包装・給水処理した作物への弱光照射が重量, 葉色および クロロフィル蛍光に及ぼす影響

²保存開始時を100としたときの保存終了時の変化の割合を示す

^y平均值±標準誤差(n=5)

*LSD検定により*は5%, **は1%水準でそれぞれ有意差あり

FTH版志主示版及4060运用主/// · · · · · · · · · · · · · · · · · ·					
作物名	処理区	硝酸態窒素濃度 ^z			還元型アスコルビン酸濃度 ²
		$(mg \cdot kg^{-1}DW)$			$(mg \cdot kg^{-1}FW)$
サラダナ	明	7526	(87) ^y	b ^x	419 (95) a
	暗	8402	(97)	а	347 (78) b
	収穫時	8622	(100)	а	442 (100) a
チンゲンサイ	明	14248	(81)	b	824 (100) a
	暗	15770	(90)	а	740 (90) a
	収穫時	17578	(100)	а	823 (100) a
ミズナ	明	19907	(76)	b	857 (97) a
	暗	23909	(91)	а	703 (79) b
	収穫時	26307	(100)	а	885 (100) a

第10表 フイルム包装・給水処理した作物への弱光照射が 体内硝酸態窒素濃度および還元型アスコルビン酸濃度に及ぼす影響

^z平均值(n=5)

^y括弧内は収穫時を100としたときの保存終了時の変化の割合を示す

^x同作物・同列の異なるアルファベット間にDuncan検定により

有意差あり(P<0.05)

第5節 考 察

出荷されるコマツナには主根がついているが細根は 切断されているので、そのままの状態で放置すると直 ちに萎れが認められるが、給水処理を行うと萎れの開 始が遅くなり、保存2日後にようやく萎れが観察され た(データ省略).さらに,萎れの開始を遅くするには, 低温条件やフイルム包装による蒸散の抑制が有効とな る. 一方, セル成型苗の低温保存において, 光補償点 付近の光強度の照射は苗の老化を抑制することが知ら れている(古在ら, 1996). そこで,低温条件,フイル ム包装,給水処理および弱光照射を組み合わせて、コ マツナを保存した(第1節). その結果,給水処理しな い区では保存中の新鮮重は減少し、その減少が明区で 顕著であったが、給水処理して弱光を照射すると、新 鮮重の減少がなく、萎れが観察されなかった(第16 図、第7表)、久保ら(2003)は、低温下であっても青 果物に光を照射すると、光照射されている組織表面温 度は 2℃程度高くなるので、蒸散が盛んになること、 また、光照射(光合成)によって体内の水が分解する ことが重量減少と関係していることをブロッコリーで 報告している.つまり,ブロッコリーの花らいを5-10℃, 100-250 lx の条件下でフイルム包装することによって, 重量減少を4%以内に抑えることができることを報告 している. 本実験で給水処理したコマツナでは、7℃あ るいは14℃,明暗の条件下でも重量の減少が認められ ず, 増加した. これは, 収穫後直ちに根を浸漬するこ とによって主根から吸水が行われたことに加えて、フ イルム包装により蒸散が抑制されたために萎れが観察 されず,保存後に新鮮重が増加したためと考えられる.

このように、継続的な吸水が行われていることは、 葉の気孔から蒸散が行われ、気孔が正常に機能してい ることを意味しており、光が照射されれば光合成を行 っていると考えられるので、葉色を調査したところ、 明区は暗区に比べて、やや SPAD 値が大きく、葉の緑 色も低下しなかった(第17回,第7表).また、保存 開始から袋内の酸素と二酸化炭素の濃度の変化を測定 したところ(第19回)、保存 60 時間を超えると両区で 相違がみられ、暗区の二酸化炭素濃度は上昇したが、 明区のそれは変化しなかったことから、明区では呼吸 によって生じた二酸化炭素が光合成に使用されている と推察される.このように、収穫後に特殊なフイルム での一時的な蒸散抑制、その後に根からの吸水が行わ れたコマツナは光を照射することで光合成、呼吸、葉

緑体の形成などの代謝を行っていることが示唆された. なお、給水しなかった暗区と明区において、保存後の SPAD 値が大きく、また、アスコルビン酸濃度が減少 しなかった(第18図)のは、植物体内の水分含量低下 による濃縮効果によるものと考えられる.一方,給水 処理した区では明暗条件にかかわらずアスコルビン酸 濃度が低下したが、アスコルビン酸は重要な機能性成 分であり、給水処理中に減少するのは問題である.細 田ら(1981)は株から切り離したコマツナ葉に昼色灯 を 3000 lx 以上で 24 時間連続照射し、還元型アスコル ビン酸が増加したことを報告しているが、本研究では 光合成有効光量子束密度 PPFD 2.85~4.56 µmol・m⁻²・ s⁻¹で、細田ら(1981)が使用した照度 3000 lx (PPFD に換算すると、 $38.9 \,\mu\text{mol} \cdot \text{m}^2 \cdot \text{s}^{-1}$)よりも著しく光合 成有効光量子東密度小さかったため、還元型アスコル ビン酸濃度の生合成に必要な光強度に達していなかっ たと考えられ、還元型アスコルビン酸濃度を増加する には光強度を大きくする必要がある.

吉田ら (1998) は収穫 10 日前に窒素を含まない培養 液あるいは栄養成分を含まない地下水に替えることに より、植物体内窒素濃度が 75~90%低下することを、 岡崎ら (2006) はホウレンソウにおいて、収穫1週間 前における土壌中の硝酸イオン濃度と収穫時の作物体 硝酸イオン含有率との間に正の相関があることを報告 している. 本実験において、弱光・給水処理したコマ ツナでは、葉緑体の形成が行われ、わずかであるが光 合成も行われていると推察される(第7表,第16,17, 19 図). 次に、これらの代謝に関連する酵素などの生 成に硝酸態窒素が使われていると考えられるので、株 全体の硝酸態窒素濃度の変化を調査した. その結果, 14℃では保存4日後に約36%の低下が(第20図),7℃ では保存15日後に約38%の低下が認められ(第22図), 保存温度が高いときに硝酸態窒素濃度の低下が早く起 こることがわかった.よって、収穫後でも植物体の根 から水が吸収され、また硝酸態窒素が代謝されるよう な条件が整えば植物体内の硝酸態窒素を減らすことが できることがわかった.

保存中に硝酸態窒素濃度が低下したのは、株内の葉 位間や葉内の部位間(葉身と葉柄)の移動が考えられ る.そこで、葉位間および葉の部位間の硝酸態窒素の 推移をみた(第8表).収穫後における硝酸態窒素濃度 は、外側の外葉と内側の中心葉で早くから低下が始ま り、中側の中位葉では増加してから低下すること、ま た、光照射して呼吸、光合成、蒸散などの作用が行われ る条件が継続すれば、各葉位および各部位ともにその 濃度が低下することがわかった.なお、これらの結果 の中で、特に、第II葉の硝酸態窒素濃度は一時的に増 加し、その後は減少する変化を示した(第7表).これ は吸水および蒸散に伴って水と硝酸態窒素が根から葉 柄、葉身へと移動していく過程において

(Cardenas-Navarro ら, 1999),根に蓄積された硝酸態窒素が,代謝が活発であると考えられる中位の葉に優先的に転流し,代謝されたことによると推察されるが,この点については硝酸還元酵素などの調査も含めて検討する必要がある.一方,硝酸同化を律速している硝酸還元酵素および硝酸態窒素濃度は光が照射されている葉で高いことが知られている(Gaudreau ら, 1995).また,壇ら(2005)はコマツナに照射する光強度を増加させると,葉中の硝酸イオン濃度が低下することを明らかにしている.本実験における光の強さは2.85~4.56 µmol・m²・s⁻¹と弱いので,光によって直接的に硝酸態窒素を還元しているとは言い難い.第3節では保存5から10日までの硝酸態窒素濃度の減少は,光の有無と関係なく生じるので,植物体の代謝を維持することによる副次的効果のほうが大きいと推察されるが,

このことについても今後検討すべき課題である.

さらに、コマツナと同様に高温期で硝酸態窒素濃度 が高くなるサラダナ、チンゲンサイおよびミズナにお いて、この技術の適用性試験を行った(第4節).その 結果、硝酸態窒素濃度(第10表)は、いずれの作物で もコマツナと同様に明区で収穫時よりも低下したが、 暗区では収穫時と同じ程度であった.また、作物によ って硝酸態窒素濃度の減少率に差がみら、ミズナで大 きく、サラダナで小さかった.これは、根の給水力の 違いや蒸散量の違いが関与していると考えられるが、 各作物の T/R 比も関与していると考えられる.すなわ ち、サラダナの T/R 比は小さかったが、ミズナのそれ は大きかったことから、根部が少なく、地上部が多い ミズナのような作物では、根に蓄積されている硝酸態 窒素が少なく、蒸散が行われると、その蒸散流で光合 成器官である葉に移動し、代謝されたと推察された.

一方,クロロフィル蛍光をみると(第9表),明区で は高く,葉色も濃かった. Ali ら(1999)はクロロフ ィル蛍光とクロロフィル含量の間に比例関係があるこ とを報告していることから,本実験においてサラダナ, チンゲンサイおよびミズナで葉の緑色が維持され,葉 の細胞の生理活性が低下していないと考えられた.ま た,第1節のコマツナにおいては還元型アスコルビン 酸が明暗区とも減少したが、第4節で供試したいずれ の作物では明区で低下しなかった.これは、作物の種 類によって還元型アスコルビン酸の生合成に必要な光 強度が異なっているためと推察され、サラダナ、チン ゲンサイおよびミズナは、コマツナよりも還元型アス コルビン酸濃度の生合成に必要な光強度は小さいと考 えられたが、この点に関しては今後検討する必要があ る.

従って、本実験に供試したサラダナ、チンゲンサイ およびミズナでも、フイルム包装して弱光照射・給水 処理して低温保存を4日間行うと、新鮮重、葉色、還 元型アスコルビン酸濃度などが維持されたまま、硝酸 態窒素濃度を減少することが可能であった。

養液栽培および養液土耕栽培では窒素施肥量の制御が 容易に行えるが、多くの土耕栽培では生育後期に施肥 量を制御することは困難である.本研究では、収穫後 の保存期間中に硝酸態窒素を含まない水を供給しなが ら、低温・弱光・給水・フイルム包装を組み合わせる ことによって、品質が保持され、かつ硝酸態窒素濃度 が低下した.特に、14℃の条件で保存4日後に約36% の減少が認められ、この温度条件における弱光処理は 実用場面でも使える技術であると思われる.

第6節 摘 要

フイルム包装して給水処理を行ったコマツナを低 温・弱光下に保存したときの新鮮重, 葉色などの品質 および葉内の硝酸態窒素濃度の変化を検討した.

フイルム包装して給水処理を行ったコマツナは、フ イルム包装による蒸散の抑制と、主根からの継続的な 吸水が行われるため萎れが観察されず、保存後に新鮮 重が増加した.弱光照射によって葉緑体の形成などが 行われたため葉の緑色は退色しなかった.光合成、呼 吸、葉緑体形成などで窒素が代謝されるので、各葉位 および各部位(葉身と葉柄)ともに硝酸態窒素濃度が 低下し、特に、14℃の条件で保存4日後に約36%の減 少が認められた.

また、フイルム包装して給水処理を行い、低温・弱 光下に保存する方法は、サラダナ、チンゲンサイおよ びミズナでも硝酸態窒素濃度が低下した.

以上のことから、収穫後にフイルム包装、給水処理, 弱光照射および低温条件を組み合わせて保存すると, 新鮮重,アスコルビン酸含量,葉色などの品質の低下 が少なく,硝酸態窒素濃度の低い植物体となることが 確かめられた.

第4章 総合考察

硝酸態窒素は人体~摂取された後, 亜硝酸を経て発ガ ン性物質であるニトロソアミン化合物になる場合があ ることが知られている (Craddock, 1983; Sohar・Domoki, 1980; 米山, 1982).また,野菜類の中でもコマツナや ホウレンソウなどの緑色野菜の可食部には,硝酸態窒 素が多く含まれている(岩本ら, 1968; 下橋・寺田, 1994)ため,これらの野菜の摂取量が多い我が国では, 硝酸態窒素の摂取の 80%以上が野菜類であること

(孫・米山, 1996) が報告されている. このような状況の中で,消費者の健康志向の高まりから,機能性成分などの情報にも関心が高く,硝酸態窒素濃度が低い商品は高く購入しても良いなどのアンケート結果もある(諌山ら, 2002). 生産者も消費者ニーズに答えるべく,硝酸態窒素濃度の低い農産物の生産に取り組んでいる.

作物体内の硝酸態窒素濃度は品種,栽培環境,栽培 方法によって異なり,特に夏作でその濃度が高い傾向 がみられた(第1章,第3図).植物体内硝酸態窒素濃 度を低減するためには,硝酸態窒素の集積が夏作で助 長される要因を解析することが必要である.そこで, 本章では先ずコマツナの硝酸態窒素の集積過程を述べ るとともに,夏作でその濃度が高くなる要因を考察し た.次に,植物体内硝酸態窒素濃度を低減するための 方法について考察した.

1. コマツナ体内への硝酸態窒素 集積課程

植物は一部のマメ科植物を除き,大部分を根から無 機態の形で窒素を取り込む.根から吸収された硝酸態 窒素は,根細胞や維管束を通じて葉などの細胞質で, NADH-チトクロームc脱水素酵素活性をもつタンパク 質および Mo-タンパク質からなる複合酵素である硝酸 還元酵素によって亜硝酸に,さらに,葉緑体などの色 素体に局在する亜硝酸還元酵素により細胞顆粒などで アンモニアに還元され,有機酸と結びつきアミノ酸の 生合成に利用される(榊原・杉山,1997).よって,植 物体内に硝酸態窒素が蓄積するのは,(1)根から吸収さ れる硝酸態窒素の絶対量が多い場合と,(2)吸収した硝 酸イオンが還元や同化が十分に行われないために,吸 収された硝酸態窒素が蓄積される場合が考えられる. 先ず、コマツナの根からの硝酸態窒素の吸収につい て考えてみると、土壌中に溶出した硝酸態窒素が多量 にあれば、根から硝酸態窒素を過剰に吸収する性質を 持っていると考えられる.その理由として、1)生産現 場では施用窒素量によって体内の硝酸態窒素濃度が変 化していたこと、2)実験的に施肥量を変えた場合、施 肥量を少なくすると体内の硝酸態窒素濃度が低下し、 多くするとその濃度が高くなり、窒素の施用量と体内 の硝酸態窒素濃度とに関係があること、3)溶出速度が 速い化成肥料の施用した体内の硝酸態窒素濃度が緩効 性肥料の施用よりも高いこと(第1章、第7図)、4) 吸水とともに硝酸態窒素は吸収されるが、蒸散が抑え られた乾燥条件で硝酸態窒素濃度が高くなったこと (第2章、第13図)があげられる.さらに、5)硝酸は 重要な浸透圧調節物質であり(McIntyre, 1997)、水が

重要な浸透圧調節物質であり(McIntyre, 1997),水が 溶媒となって移動している(秋山・有馬, 1995)と言 われている.硝酸が体内に蓄積されることで,水の吸 収を助長するので,肥大・成長に硝酸態窒素の吸収と 蓄積が重要な役割をしていると推察される.よって, 土壌中の硝酸態窒素の溶出が大きく,根が硝酸を吸 収・蓄積すると,それがトリガーとなってさらに水と 硝酸を吸収するので,体内に蓄積される量が多くなる と思われる.

次に、吸収した硝酸の還元や同化が十分に行われな いために、吸収された硝酸態窒素の移動が緩慢となっ て蓄積される場合を考えてみたい. 植物は蒸散によっ て気孔を通して水を体外へ放出し、気孔は葉(葉身) に多く存在している. 蒸散が盛んな状態では植物体内 で吸水された水は根, 葉柄を経て葉身へ移動する. そ こで、硝酸態窒素濃を葉の部位別でみると、いずれの 葉位でも葉柄が葉身よりも高く, 部位別に測定した多 くの報告(福田ら, 1999;科学技術庁資源調査会, 2000; 建部ら、1995) でも同様であり、硝酸態窒素は葉柄に 高濃度で蓄積されている. 葉身は光合成の場であり、 同化産物である糖が変換されて生成された有機酸と, 硝酸から還元されたアンモニアとが結びついてアミノ 酸を合成し、クロロフィルの合成によって消費される. よって、硝酸態窒素濃度は葉柄が葉身よりも高い. ま た、レタスでは外側の葉の硝酸態窒素濃度が内側の葉 のそれよりも高いことが知られているが (Gaudreau ら, 1995)、コマツナにおいて葉位間で硝酸態窒素濃度をみ ると、外側の葉から内側へ行くほどその濃度が低くな

っていた(第3章,第8表).吸収された硝酸の40~ 50%はクロロフィルの合成に使われること,また成葉 になると気孔の数が多く,硝酸態窒素は根から新葉よ りも成葉へと蒸散流に乗って移動するので,蒸散が多 く,クロロフィル含量が多い外側の葉へ移動すると考 えられる.また,硝酸は重要な浸透圧調節物質であり

(McIntyre, 1997),水が溶媒となって移動している(秋山・有馬, 1995).また,Cardenas-Navarroら(1999) は体内の水分含量と硝酸含量との間に正の相関関係が 成り立つことを報告していることから,蒸散・光合成 の代謝活性が盛んなところに硝酸態窒素が移動する.

もし、潅水量が少なくなり、体内の水ポテンシャル が低下し、気孔が閉鎖して蒸散が停止すると、根から 吸収された硝酸は浸透ポテンシャルを高めるため使わ れるので、還元されることなく葉柄や葉に蓄積すると 推察される.また、硝酸同化に関与している硝酸還元 酵素は光で活性化されていることが知られている

(Lillo, 1994)ので、遮光を行うと作物体内で硝酸態窒 素濃度が高まる(Yazawa ら, 1986).一方,福田ら(1999) は深夜照明を利用した補光をホウレンソウに行い、葉 の硝酸イオン濃度を低下させている.本実験(第3章) でもコマツナをフイルム包装して給水・弱光照射し, 冷蔵保存したとき,その硝酸態窒素は低下し,さらに、 ミズナのように、T/R 比が大きいと保存後の地上部の 硝酸態窒素濃度の減少率が大きくなったことから、弱 い光でも硝酸が還元されていると推察されるので、植 物体に光が長時間照射されていることが重要である. しかし、夏作のコマツナのように高温下の栽培では、 硝酸態窒素や水の吸収が活発に行われ、成長も早くな るが、吸収された硝酸の同化を十分に行うだけの日長 時間が短いために体内に硝酸態窒素が残ったと推察さ れた.

従って、体内に硝酸態窒素濃度が蓄積するのは、土 壌中に溶出している硝酸塩が多く吸収が促進されるよ うな高温・多湿条件の場合、乾燥によって硝酸が移動 しない場合、生育が早く吸収した硝酸が多く、還元・ 同化できる量を上回った場合である.

2. コマツナ体内硝酸態窒素濃度の 低減

1. で述べたように、コマツナの硝酸態窒素濃度を低 減するには、第一に硝酸態窒素の吸収量を制限するこ と. もう一つは、体内で取り込んだ硝酸態窒素の分解 を促進させることである.

施用窒素量が、体内の硝酸態窒素濃度に大きく影響 を及ぼし(建部ら、1995)、施肥量が多い、あるいは土 壌に残存している硝酸が多ければ、吸収して体内の硝 酸態窒素濃度は高くなる. 本実験でもまた, 肥料の溶 出が遅い緩効性肥料の施用はそれが早い化成肥料に比 べて硝酸態窒素濃度の低減の効果が大きかった(第1 章). さらに、牛ふん堆肥の連用(小田島ら、2006)や 有機質肥料の長期施用(松本ら, 1999)によって体内 硝酸態窒素濃度を低下させた事例がある.従って、硝 酸態窒素濃度を低減するためには、1)生育初期から硝 酸態窒素の吸収量を制限する必要があるので、前作に 施用した窒素の残存量をチェックし、その量を考慮し ながら次作の施用量を決定する.2)生育に合わせて肥 効をコントロールする. 例えば、分施する、あるいは 収穫後期に肥効が高くない肥料の選択を行う.例えば、 収穫後期に硝酸の吸収が少なくするために、溶出の少 ない緩効性肥料、堆肥などを中心に施用することであ る.3)品種の中に硝酸態窒素濃度が低い品種がある(第 1章)ので、低硝酸態窒素品種を使うことである.4) 栽培管理においては、地温を下げるフイルムを用いて 昇温を抑制する.また、水分ストレスを与えないよう な水管理を行うことが重要である. なお, 収穫後期に 栄養成分を含まない地下水に替えることが重要である が、収穫後期に潅水すると品質が低下するので、潅水 量は留意して決定するべきである.

しかし、夏作のように高温条件では、前作で残った 残存肥料、あるいは有機態窒素が無機化する量が低温 期よりも多く、コマツナの窒素吸収量が過剰になる. また、有機態肥料がない土壌を用いて緩効性肥料を施 用した場合でも、無機態窒素の溶出が多く、作物体に 吸収される.収穫後期に潅水すると良いが、コマツナ では播種前に十分な潅水を行い、その後は潅水しない 方法で栽培されているので、収穫後期は比較的乾燥状 態になり、硝酸態窒素が高くなる.さらに、低硝酸態 窒素品種を用いても、体内の硝酸イオン濃度が 3000 ppm(硝酸態窒素濃度で677 mg・kg⁻¹FW)以上とな るので、夏作における低減法が必要になる.

よって,夏作では高濃度に硝酸態窒素濃度が蓄積す るが,施肥量,肥料の種類,品種,潅水法などでその 濃度をコントロールすることは難しい.一方,近年の 生産者は葉菜類を収穫するとその場ですぐにフイルム 袋に入れて出荷調整するのが慣例である.これは,冷 蔵庫が農家にも普及し収穫したものが直ぐに冷蔵でき

るためで、鮮度を重視しているからである.しかし、 以前は日中収穫して萎びたものを夜に調整し(萎びて いるので外葉の葉柄が折れにくい),調整後に根の部分 を水に浸していた. 翌朝になると吸収し、萎びがなく 出荷していた. この給水期間を延長し、品質を低下し ないようにできる環境を人工的に作ることができれば、 収穫後のポストハーベストで硝酸態窒素濃度を低下さ せることができると考えられた. また, 深夜補光によ って硝酸還元酵素の活性が高まり硝酸態窒素濃度が低 下したこと(福田ら、1999)からも硝酸還元酵素の活 性を高めること、すなわち受光量を多くすると硝酸態 窒素濃度が低下すると考えられた.そこで、フイルム袋 の中でコマツナに給水処理して、弱光をしたところ、 保存4日後に硝酸熊窒素濃度が低下した.また、この 効果はコマツナだけでなくミズナなどでも確認された. フイルムや光照射するのでコストがかかるので、硝酸 熊窒素濃度が著しく高くなる夏作のみ有効であろう.

一方, 諫山ら(2002)は広島県で消費者に夏どりホウ レンソウの価格についてのアンケートを実施したとこ ろ,209円/200gのホウレンソウにEUの硝酸態窒素濃 度基準値未満であれば 292 円/200gの価値があり、従 来よりもビタミンCが2倍含有しているものが239円 /200gの価値と判断すると報告し、本実験における収 穫後にフイルム包装し, 湿式輸送を行いながら弱光を 照射する方法は、ビタミンCの損出がないので機能性 成分が維持され、硝酸態窒素濃度の低下に加えて栄養 面からも付加価値が向上し有利な販売ができると推察 される. 付加価値を付ける方策の一つと考えられる. また、保存中に吸水が行われていたことから、日本人 の摂取量が少ないカルシウムをコマツナに吸収させる ことにより、高カルシウム含量のコマツナを生産でき ると推察されることからも付加価値をさらに付けるこ とが可能と考えられる.本研究での温度設定は14℃で 販売店の陳列棚の温度であるので、閉店時にも弱光を

照射する管理を行うことでコマツナの夏季の出荷が可 能になると思われる.

また、収穫後の硝酸態窒素濃度を低下させる方法と して、コマツナはゆでる、炒める等の調理がある.「五 訂日本食品標準成分表」(2000)において、コマツナで はゆで、湯切り、水冷、水切り、手しぼりを順に行う と硝酸態窒素濃度が 35%除去できることを述べてい るが、渡邊ら (2003)は同様の方法で重要な機能性成 分であるビタミンC (アスコルビン酸)が 50%以上損 出することを報告している.調理法によっても硝酸態 窒素濃度が低減するので、夏作の葉菜類では食べ方に も留意するなどの喚起、啓蒙が必要である.なお、炒 めることは植物体より水分が流出しないため、硝酸態 窒素濃度が低下しないこと(茨城県農業総合センター, 2003)が報告されている.

さらに、茨城県内において、コマツナ、チンゲンサ イ、ホウレンソウおよびミズナは体内の硝酸態窒素濃 度が高くなりやすい品目であった(茨城県農業総合セ ンター園芸研究所、2003).多くの葉菜類で硝酸態窒素 は古い葉に集積することから、出荷規格を超えた大株 生産を行い、収穫後の調整作業時に摘葉を多くして若 葉を出荷規格にすることで硝酸態窒素濃度が低いコマ ツナ生産が可能になると考えられた.しかし、除去し た葉の基部から雑菌の混入がないか、蒸散が多く萎れ がないかを、今後検討しなければならない.

最後に、低硝酸態窒素濃度品種を育成することが、 夏作で特に必要である. 'よかった菜'は硝酸態窒素濃 度が少なかった. 品種間で各形質との相関を検討した が、硝酸態窒素濃度と相関のある形質は見当たらなか った. しかし、硝酸態窒素を吸収する器官が小さく、 硝酸を分解する器官が大きいことは、硝酸態窒素の収 支から硝酸態窒素濃度は低下すると推察されるので、 この点については、今後検討すべき課題である.

第5章 摘

コマツナ、チンゲンサイおよびホウレンソウ等の多 くの葉菜類は、夏季の生産は外観だけでなく、ビタミ ン、硝酸熊窒素濃度などの内容成分に関する品質が冬 季よりも低下する.近年では植物体内硝酸態窒素濃度 に関心を持つ消費者が多いため、生産者も硝酸態窒素 濃度低減に取り組んでいる.

そこで、本研究では、コマツナ体内の硝酸態窒素の 蓄積に影響を及ぼすと考えられる作型、肥料の種類と 施肥量,品種の影響を把握した.次に,夏作で硝酸態 窒素濃度が高かったので、その要因を温度と潅水量に 着目して解析した. さらに, 収穫後に硝酸態窒素を低 減させる方法を開発した.

コマツナの品種および栽培環 第1章 境の違いが体内の硝酸熊窒素 濃度に及ぼす影響

国内で生産されたコマツナを夏季と冬季で比較する と, 著しく夏季で硝酸態窒素濃度が高くなるので, 夏 季に栽培されたコマツナ体内の硝酸熊窒素濃度が高く なった温度、日長、日射量等の環境要因、特に日長と の関係から解析した. また, 硝酸態窒素の吸収特性を 明らかにするため、温度と肥料の種類との関係を検討 した. さらに, コマツナ品種と硝酸態窒素濃度との関係 および硝酸態窒素濃度の低い品種の特性を調査した.

コマツナを夏と冬に作付けし、作型の違いが体内硝 酸態窒素濃度に及ぼす影響を検討したところ、コマツ ナの体内硝酸態窒素濃度は、冬作よりも夏作で高かっ た. 夏作では冬作よりも気温が高く、栽培期間が短か ったため1日の日射量は大きかったが、積算日照時間 は短かった. 夏作で体内硝酸態窒素濃度が高かったの は、積算日照時間が短かったため、吸収された硝酸の 硝酸同化が不十分であることが関係していると推察さ れた.

次に、コマツナの硝酸熊窒素吸収特性と被覆肥料の 効果を把握するため、温度および被覆肥料で窒素溶出 をコンロールしてコマツナの窒素吸収量、土壌中残存 硝酸態窒素含量および体内硝酸態窒素濃度を調べたと ころ、低温区で被覆肥料の窒素成分が制限され、窒素 吸収量および残存硝酸態窒素含量は少なく、体内硝酸 態窒素濃度は低かったが、速効性の化成肥料を施用し た慣行区は窒素吸収量、残存硝酸態窒素含量および体

要

内硝酸態窒素濃度が高温区と差がなかったことから、 コマツナは硝酸熊窒素を過剰に吸収すると推察され. 低温下で被覆肥料の施用は窒素吸収を制限するため, 体内硝酸熊窒素濃度を低下させる一つの方策であるこ とが示唆された.

夏作でコマツナの硝酸熊窒素濃度と品種間差異およ び低い品種の特性を、12品種供試して検討した. その 結果,体内の硝酸態窒素濃度には品種間差が認められ,

'よかった菜'は硝酸態窒素濃度が著しく低かった. 硝酸態窒素濃度と生体重などの生育および草姿などの 形態との間に有意な相関は認められず、外観からの硝 酸熊窒素濃度の推定は困難であった.

温度および潅水量の違いがコ 第2章 マツナの生育・体内硝酸熊窒 素濃度に及ぼす影響

夏作におけるコマツナの体内硝酸熊窒素濃度が高い 要因を温度と潅水量に着目して検討した. すなわち, 温度および潅水量の違いがコマツナの体内硝酸態窒素 濃度, 葉の光合成速度, 蒸散量に及ぼす影響とそれら の相互関係を調べた.

異なる温度条件で栽培したときの新鮮重および乾物 重から、コマツナの生育適温は14~22℃であることが わかった、22℃以上の温度下では生育量が低下し、体 内の硝酸態窒素濃度が高くなった.

次に, 潅水量および温度の影響を検討したところ, 潅水量の増大に伴い新鮮重の増加と体内硝酸態窒素濃 度の減少が認められた. また、体内の硝酸熊窒素濃度 は高温区が低温区よりも高くなった. 潅水量の増加に 伴い蒸散速度、光合成速度および水ポテンシャルが大 きくなった. さらに, 蒸散速度および光合成速度が高 くなると硝酸態窒素濃度が低下し、蒸散速度および光 合成速度と硝酸態窒素濃度との間には負の相関関係が 認められた.

体内の硝酸熊窒素濃度は生育温度が高く、潅水量が 少なくなると高くなった. 生育適温であれば潅水量の 増大に伴い、蒸散速度、光合成速度が大きくなり、新 鮮重の増加と体内硝酸態窒素濃度の減少が認められた. 一方、夏作では高温・乾燥条件となるが、このような 条件では体内の水ポテンシャルが低下し、蒸散速度と 光合成速度が小さくなるので, 乾物重は小さく, 体内

の硝酸態窒素濃度は高くなった.これらのことから, 夏作におけるコマツナの体内硝酸態窒素濃度が高いの は,高温乾燥によって体内の水ポテンシャルが低下し, これに伴って蒸散速度が低下するが,このことによっ て硝酸態窒素が蒸散流にのって移動できないために葉 柄や葉身に蓄積することが明らかにされた.

第3章 ポストハーベストにおけるコ マツナ体内硝酸態窒素濃度低 減技術の開発

収穫したコマツナをフイルム包装して給水処理を行って低温・弱光下に保存したときの新鮮重, 葉色などの品質および葉内の硝酸態窒素濃度の変化を検討し, 数種の体内硝酸態窒素濃度が高くなる傾向がある野菜 についての適用性を調査した.

フイルム包装・給水処理を行ったコマツナは、蒸散 の抑制と主根からの継続的な吸水が行われ、保存後に 新鮮重が増加した.弱光照射によって葉の緑色は退色 せず、光合成、呼吸、葉緑体形成などで窒素が代謝さ れるので、各葉位および各部位(葉身と葉柄)ともに 硝酸態窒素濃度が低下し、14℃の条件で保存4日後に 約36%の減少が認められた.サラダナ、チンゲンサイ およびミズナでも硝酸態窒素濃度が低下し、収穫後に フイルム包装,給水処理,弱光照射および低温条件を 組み合わせて保存すると,品質の低下が少なく,硝酸 態窒素濃度の低い植物体の生産ができることがわかっ た.

総括

これらの一連の研究を通して、コマツナにおいて夏 作で硝酸態窒素濃度が高くなったのは、まず集積は温 度が高いので、溶出した無機態窒素量が多く、吸収量が 代謝量よりも多くなるため体内硝酸態窒素が多くなる こと、乾燥すると体内の水ポテンシャルが低くなり、 蒸散流に乗って移動せずに葉柄や葉に蓄積し、硝酸同 化が不十分であることが要因であることがわかった.

次に、硝酸態窒素濃度の低減として、硝酸同化の低 下は蓄積した硝酸態窒素を還元する日照時間の不足と 硝酸同化を促進するための光合成作用の低下が関係し ていることが示唆された.

従って、夏作は硝酸態窒素濃度が高いが、品種の選定、緩効性肥料の利用、多潅水によってその濃度をある程度に低減できること、さらに、フイルム包装・給水処理を行って低温(14℃)・弱光下に保存すれば、その濃度の低減が可能になった.

謝

辞

本研究を行うにあたり,懇切な指導と本稿の校閲を 賜った茨城大学農学部教授 松田智明博士,同教授 後藤哲雄博士ならびに東京農工大学大学院農学府 教 授荻原 勲博士および懇切な指導と助言を賜った宇都 宮大学農学部教授 吉田智彦博士ならびに茨城大学農 学部准教授 井上栄一博士に深甚の謝意を表します.

本研究を通じて終始暖かいご指導と助言を賜った茨 城県農業総合センター園芸研究所所長 佐久間文雄博 士,同前所長 小川吉雄博士,同花き研究室室長 本 図竹司博士,同野菜研究室技師 安 東赫博士,同前 土壌肥料研究室流動研究員 加藤一幾博士,茨城県農 業総合センター前首席専門技術指導員 横張 久氏な らびに東京農工大学大学院農学府准教授 鈴木 栄博 土,茨城大学農学部准教授 北嶋康樹博士に深く感謝 の意を表します.

また,研究に協力して頂き助言を賜った茨城県農業 総合センター首席専門技術指導員鈴木雅人氏,三井農 林株式会社作田祥司氏ならびに株式会社不二家坂本俊 彦氏に深く感謝の意を表します.

さらに、研究上の多大な配慮と協力を頂いた茨城県 農業総合センター園芸研究所野菜研究室室長 中原正 一氏をはじめとする研究室員ならびに所内の皆様およ び栽培管理と研究補助を賜った茨城県農業総合センタ 一管理課分室の皆様、茨城大学農学部ならびに東京農 工大学大学院農学府の皆様に心から御礼申し上げます.

引用文献

- 秋山博子・有馬泰紘. 1995. 硝酸イオン吸収コムギ幼 植物における茎葉部への窒素移動と蒸散. 土肥誌. 41(2): 101.
- Ali, K., K. Koeda and N. Nii. Changes in anatomical features, pigment content and photosynthetic activity related to age of 'Irwin' mango leaves. J. Jpn. Soc. Hort. Sci. 68: 1090-1098.
- Aworth, O., J. R. Hicks, P. L. Minotti and C. Y. Lee. 1980. Effects of plant age and postharvest nitrite accumulation in fresh spinach. J. Amer. Soc. Hort. Sci. 105: 18-20.
- Barlaan, E. A. and M. Ichii. 1996. Genotypic variation in nitrate and nitrite reductase activities in rice (*Oryza* sativa L.). Jpn. Soc. Breeding 46: 125-131.
- Benoit, F. and N. Ceustermans. 1995. Horticultural aspects of ecological soilless growing methods. Acta Hort. 396: 11-24.
- Buwalda, F., and M. Warmenhoven. 1999. Growth-limiting phosphate nutrition suppresses nitrate accumulation in greenhouse lettuce. J. Exp. Botany 50: 813-821.
- Cantliffe, D. J. 1972. Nitrate accumulation in spinach grown under different light intensities. J. Amer. Soc. Hort. Sci. 97: 152-154.
- Cardenas-Navarro, R., S. Adamowict and P. Robin. 1999. Nitrate accumulation in plants: a role for water. J. Exp. Botany. 50: 613-624.
- Cataldo, D. A., M. Haroon, L. E. Schrader, and V. L. Youngs. 1975. Rapid colorimetric determination of nitrate in plant tissue by nitration of salicylic acid. Commun. Soil Sci. Plant Anal. 6: 71-80.
- 張 春蘭・渡邊幸雄・島田典司. 1990. 水耕ホウレン ソウの生育ならびに含有成分に及ぼす培養液の窒 素濃度の影響. 千葉大園学報. 43: 1-5.
- Craddock, V. M. 1983. Nitrosoamines and human cancer: proof of an association? Nature 306: 683.
- 壇 和弘・大和陽一・今田成雄. 2005. 光強度および
 赤色光/遠赤色光比の違いがコマツナの硝酸イオン濃度および硝酸還元酵素活性に及ぼす影響. 園
 学研. 4:323-328.
- 伊達 昇・米山徳造・都田紘志・加藤哲郎. 1980. 野 菜の硝酸根蓄積に及ぼす肥培管理の影響. 東京農

試研報. 13: 3-13.

- Davis, W. T. and J. Zhang. 1991. Root signals and the regulation of growth and development of plants in drying soil. Annu. Rev. Plant Physiol. Plant Mol. Biol. 42: 55-76.
- 藤原隆広・熊倉裕史・大田智美・吉田裕子・亀野 貞. 2005. 市販ホウレンソウのL-アスコルビン酸およ び硝酸塩含量の周年変動. 園学研. 4:347-352.
- 福田直也・宮城 慎・鈴木洋二・池田英男・高柳謙治. 1999. 深夜照明と培養液からのNO₃⁻除去が水耕 ホウレンソウの生育と葉の汁液中NO₃⁻濃度に 及ぼす影響. 園学雑. 68: 146-151.
- Gaudreau, L., J. Charbonneau, L. –P. Vezina and A. Gosselin. 1995. Effects of photosynthetic photon flux on nitrate content and reductase activity in greenhouse-grown lettuce. J. Plant Nutr. 18: 437-453.
- Hageman, R. H. and D. Flesher. 1960. Nitrate reductase activity in corn seedlings as affected by light and nitrate content of nutrient media. Plant Physiol. 35: 700-708.
- 羽生友治. 1998. 肥料・用土編. 肥料の種類,特性と 使い方. p.198-223. 藤原俊六郎・安西徹郎・小川 吉雄・加藤哲郎編著. 土壌肥料用語事典. 農文協. 東京.
- 原田久富美・須永義人・畠中哲哉. 2001. トウモロコ シ (Zea mays L.) の養分濃度の品種間差異. 草地 誌. 47: 289-295.
- 堀口 毅. 1987. 水分欠乏が葉の水ポテンシャルと硝 酸還元に及ぼす影響. 鹿大農学部学術報. 37: 83-87.
- 細田 浩・名和義彦・黒木征吉. 1981. 野菜の収穫後 における品質に及ぼす光の影響(第1報) コマツ ナ(detached leaf)の貯蔵中における成分変化. 食 総研報. 38: 33-39.
- 茨城県. 2005. 茨城の園芸.
- 茨城県農業総合センター. 2003. 茨城県農業総合セン ター内部資料.
- 茨城県農業総合センター. 2004. 野菜耕種基準. p. 121-122.
- 茨城県農業総合センター園芸研究所. 2003. 葉菜類の 硝酸態窒素の実態. 茨城県農業総合センター園芸 研究所内部資料.

- 池羽智子・氏家有美・鹿島恭子. 2005. ホウレンソウ, チンゲンサイ等の内容成分調査①ホウレンソウの 品種,遮光条件と内容成分. 茨城農総セ園研試験 成績書. p.243-244.
- 池田英男・大沢孝也. 1980. 施用窒素形態とそ菜の適 応性(第2報).水耕栽培において硝酸,アンモニ ア,亜硝酸を窒素源とした葉菜の生育並びにアン モニア態及び硝酸態窒素蓄積の差異. 園学雑. 48:435-442.
- Ikeda, H. and T. Osawa. 1981. Nitrate- and ammonium-N absorption by vegetables from nutrient solution containing ammonium nitrate and the resultant change of solution pH. J. Jpn. Soc. Hort. Sci. 50: 225-230.
- i棘山俊之・房尾一宏・川口岳芳・北野剛志.2002.成 分情報を表示した夏季ホウレンソウの市場競争力.

 平成 14 年度近畿中国四国農研成報.http://www. naro. affrc. go. jp/ top/ seika/ 2002/ kinki/ ki205.html
- 石原 邦・平沢 正.1985. 作物体内水分の測定.p. 115-124. 北條良夫・石塚潤爾編著. 最新 作物生 理実験法. 農業技術協会. 東京.
- 伊藤亮一. 1994. 作物の生長に対する水ストレスの影響. p. 118-124. 石井龍一編. 植物生産生理学. 朝 倉書店. 東京.
- 岩本喜伴・宮崎正則・国里進三・前田琇子・堀尾嘉友. 1968. 食品中の硝酸塩によるかん内面スズ異常溶 出に関する研究(I). かん詰原料となる果実,そ 菜中の硝酸塩.栄養と食糧. 21:47-49.
- 岩田正利. 1971. 窒素供給期間の差異とホウレンソウ の生育. 農及園. 46: 1351-1352.
- 科学技術庁資源調查会. 2000. 五訂日本食品標準成分 表. p.52-53. 大修館書店. 東京.
- 香川 彰. 1997. 高品質ホウレンソウの栽培生理. p.86-88. いしずえ 東京.
- 加藤一幾・植田稔宏・河野 隆. 2005. ミズナ等の診 断施肥技術の確立. 茨城農総セ園研試験成績書. p. 195-198.
- Kobata, T. and S. Takami. 1989. Water status and grain production of several Japonica rices under grain-filling stage drought. Jpn. J. Crop Sci. 58: 212-216.
- Kojima, M., S. J. Wu, H. Fukui, T. Sugimoto, T. Nanmori and Y. Oji. 1995. Phosphorylation/ dephosphorylation of Komatsuna (*Brassica campestris*) leaf nitrate reductase in vivo and vitro in response to environmental light condition: Effects of protein kinase and protein

phosphatase inhibitors. Physiol. Plantar. 93: 139-145.

- 古在豊樹・久保田智恵利・酒見幸助・富士原和宏・北 宅善昭. 1996. 弱光下低温貯蔵によるナスセル成 型苗の生長抑制および苗質維持. 生物環境調節. 43: 135-139.
- 久保泰彦・坂本俊彦・荻原 勲. 2002. 低温下で保存 したブロッコリーへの弱光照射が品質に及ぼす影 響. 園学雑. 71(別1): 331.
- 久保泰彦・作田祥司・坂本俊彦・荻原 勲. 2003. 弱 光照射下で低温保存したブロッコリーの品質変化 に及ぼす収穫時期と包装の種類の影響. 園学雑. 72(別1): 329.
- 熊澤喜久雄. 1999. 地下水の硝酸態窒素汚染の現況. 土肥誌. 70: 207-213.
- Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiol. Plant. 90: 616-620.
- 松本真悟・阿江教治・山縣真人. 1999. 有機質肥料の 施用がホウレンソウの生育および硝酸,シュウ酸, アスコルビン酸含量に及ぼす影響. 土肥誌. 70: 31-38.
- McIntyre, G I. 1997. The role of nitrate in the osmotic and nutritional control of plant development. Aust. J. Plant Physiol. 24: 103-118.
- 三代恭広・太田勝巳・松本真悟. 2005. 側条施肥栽培 におけるペースト肥料の窒素組成の違いがホウレ ンソウの硝酸含量に及ぼす影響. 土肥誌. 76: 849-857.
- Miyajima, D. 1994. Effect of concentration of nutrient solution, plant size at haravest, and light condition brfore harvest on the ascorbic acid and sugar concentration in leaves of hydroponically grown komatsuna (*Brassica campestris* L. rapifera group). J. Jpn. Hort. Sci. 63: 567-574.
- 中村武次郎. 1983. 葉菜類の生育と硝酸態窒素含有量. 農及園. 58: 587-588.
- Nashlom, T., A. Ekblad, A. Nordin, R. Giesler, M. Hogberg and P.Hogberg. 1998. Boreal forest plants take up organic nitrogen. Nature 392: 914-916.
- 日本土壌協会. 2001. 土壌機能モニタリング調査のための土壌,水質及び植物体分析法. p. 254-255. 大雄社. 東京.
- 西尾道徳. 2001a. 農業生産環境調査にみる我が国の窒 素施用実態の解析. 土肥誌. 72:513-521.
- 西尾道徳. 2001b. 作物種類別の施肥窒素負荷量に基づ

く地下水の硝酸性窒素汚染リスクの評価法. 土肥 誌. 72: 522-527.

- 農林水産省食品流通局野菜振興課資料. 2001. 園芸用 ガラス室, ハウス等の設置状況.
- 小田雅行・大野 元. 1980. コマツナの生育に及ぼす 積算温度及び積算日射量の影響.野菜試験場報告. A. 7: 183-195.
- 小田島ルミ子・高橋正樹・平賀昌晃・小野剛志・阿江 教治・松本真悟. 2006. オガクズ牛ふんたい肥の 長期施用がホウレンソウの生育および窒素吸収に 及ぼす影響. 園学研. 5:389-395.
- 王 秀峰・伊東 正. 1997. 水耕ホウレンソウの生育, 収量および NO₃ 含量に及ぼす補給液の NO₃-N の 影響. 園学雑. 66: 313-319.
- Okamoto, M., K. Okada, T. Watanabe and N. Ae. 2003. Growth responses of cereal crops to organic nitrogen in the field. Soil Sci. Nutr. 49: 445-452.
- 岡崎圭毅・建部雅子・唐澤敏彦. 2006. ホウレンソウ における汁液硝酸イオン濃度の推移および糖・シ ュウ酸含有率に対する養液土耕栽培の効果. 土肥 誌. 77: 25-32.
- Otoo, E., R. Ishii and A. Kumura. 1989. Interaction of nitrogen supply and soil water stress on photosynthesis and transpiration in rice. Jpn. J. Crop Sci. 58: 424-429.
- Reinink, K. and A. H. Eenink. 1988. Genotypicl differences in nitrate accumulaton in shoots and root of lettuces. Scientia Hortic. 37: 13-24.
- Remmler, J. L. and W. H. Campbell. 1986. Regulation of corn leaf nitrate reductase. □. Synthesis and turnover of the enzyme's activity and protein. Plant Physiol. 80: 442-447.
- 榊原 均・杉山達夫. 1997. 窒素栄養の分子生物的ア プローチ 3 無機窒素の代謝と光合成. 土肥誌. 68: 75-80.
- Scharpf, H. C. 1991. Nutrient influences on the nitrate content of vegetables. The Fertiliser Soc. 313: 1-24.
- 下橋淳子・寺田和子. 1994. 市販野菜に含まれる硝酸 塩量. 駒沢女子短大研紀. 27:73-75.
- Shinohara, Y. and Y. Suzuki. 1988. Quality improvement of hydroponically grown leaf vegetables. Acta Hort. 230: 279-286.
- Sohar, J. and J. Domoki. 1980. Nitrite and nitrate in human nutrition. Bibithca Nutr. Dieta. 29: 65-74.
- 孫 尚穆・米山忠克. 1996. 野菜の硝酸:作物体の硝

酸の生理, 集積, 人の摂取. 農及園. 71: 1179-1182.

- Sugiyama, N., M. Hayashi and M. Uehara. 1999. Effect of water stress on oxalic acid concentrations in spinach leaves. J. Jpn. Soc. Hort. Sci. 68: 1155-1157.
- 高橋 茂・山室成一. 1992. 湛水土壌における土壌有 機態窒素の無機化と地温との関係. 土肥誌. 63: 463-465.
- 建部雅子. 1999. 窒素栄養の制御による作物品質成分の改善に関する研究. 農研セ研報. 31:19-83.
- 建部雅子・石原俊幸・松野宏治・藤本順子・米山忠克. 1995. 窒素施用がホウレンソウとコマツナの生育 と糖,アスコルビン酸,硝酸,シュウ酸含有率に 与える影響. 土肥誌. 66: 238-246.
- 建部雅子・岡崎圭毅・鍵下恵太・唐澤敏彦. 2006. ホ ウレンソウの硝酸イオン含有率低減に対する養液 土耕栽培の効果. 土肥誌. 77:9-16.
- 建部雅子・佐藤信仁・石井かおる・米山忠克. 1996. 緩効性窒素肥料の施用がホウレンソウのシュウ酸, アスコルビン酸,硝酸含有率に与える影響. 土肥 誌. 67: 147-154.
- 建部雅子・米山忠克. 1995. 作物栄養診断のための小 型反射式光度計システムによる硝酸および還元型 アスコルビン酸の簡易測定法. 土肥誌. 66: 155-158.
- 塚澤和憲. 2002. 低硝酸コマツナ品種の選定とホウレ ンソウの生育進度に伴うシュウ酸含有量の変動に ついて. 農耕と園芸 57(10): 76-79.
- 津野幸人. 1975. 数種作物における光合成作用と蒸散 作用の関連について. 日作紀. 44:44-53.
- 上西愛子. 2004. ホウレンソウにおける硝酸塩・シュ ウ酸塩濃度は品種および季節により大きく変動す る. 園学雑. 73(2):421.
- 上野正夫・熊谷勝巳・冨樫政博・田中伸幸. 1991. 土 壌窒素と緩効性被覆肥料を利用した全量基肥施肥 技術. 土肥誌. 62: 647-653.
- 梅津頼三郎・江原 薫・山田芳雄. 1969. 飼料作物に おける硝酸態窒素含量に関する研究. 第6報 イ タリアン・ライグラスのNO₃-N吸収に及ぼす温 度ならびにNO₃-N含量の影響. 日作紀. 38(1): 63-64.
- Van, D.A. 1986. Means of preventing nitrate accumulation in vegetable and pasture plant. p. 455-471. in: H. Lambers, J. J. Neetson and I. Stulen Fundamental, ecological and agricultural aspects of nitrogen

metabolism in higher plants. Mart. Nijh. Publishers Dordr. Netherlands.

- 和田源七・松島省三・松崎昭夫. 1968. 水稲収量の成 立原理とその応用に関する作物学的研究. 第 87 報出穂期までの乾物生産に及ぼす窒素の影響なら びに乾物生産と単位面積あたり頴花数の成立内容 との関係. 日作紀. 37: 557-563.
- 渡邊智子・鈴木亜夕帆・熊谷昌士・見目明継・竹内昌 昭・西牟田守・萩原清和. 2003. 五訂成分表収載 食品の調理による成分率変化率表. 栄養学誌. 61(4): 251-262.
- Wheeler, E. F., L. D. Albright, R. M. Spanswick, L. P. Walker and R. W. Langhans. 1998. Nitrate uptake kinetics in lettuce as influenced by light and nitrate nutrition. Amer. Soc. Agri. Engineers. 41: 859-867.

- White, J. W. 1975. Relative significance of dietary sources of nitrate and nitrite. J. Agric. Food Chem. 23: 886-891.
- 山下市二. 2002. 野菜の硝酸. 食衛誌. 43:12-15.
- 山下市二. 2004. ホウレンソウの硝酸塩低減化技術. 農耕と園芸. 40-43.
- Yazawa, S., H. Tanaka and T. Namiki. 1986. Nitrate accumulation in Chinese mustard (*Brassica campestris* cv. Marubakomatsuna) grown under different light conditions. Sci. Rep. Kyoto Pref. Univ., Agr. 38: 1-6.
- 米山忠克. 1982. 空気,土,水,植物における硝酸, 亜硝酸,Nーニトロソ化合物.保健の科学.24: 725-729.
- 吉田 敦・原田和夫・菅原彰敏・但野利秋. 1998. 水 耕ホウレンソウの品質および生長に及ぼす培養液 処理の影響. 土肥誌. 69: 178-184.

Summary

Accumulation and reduction of nitrate nitrogen content in Komatsuna (*Brassica campestris* L.) plants

Takashi kaidzuka

It is known that the high concentrations of nitrate nitrogen (N) in leafy vegetables such as Komatsuna, Chinese cabbage, and Spinach might be potential toxicological risk for human health. Some consumers who are interested in the concentration of nitrate N in leafy vegetable are increased, and producers of leafy vegetable is trying to reduce the concentration of nitrate N in leafy vegetable. In this study, we investigated the effects of crop season, amount of N fertilizer, form of fertilizer or cultivar on concentrations of nitrate N in Komatsuna plants. In summer, it was higher concentration of nitrate N than in winter, so we focused on the temperature and the amount of irrigation. Furthermore we confirmed the way that was able to reduce the concentration of nitrate N in plants after harvest.

- 1. The concentration of nitrate N in Komatsuna plant was higher in summer than in winter. It was higher temperature, so plants were more rapidly grown. Therefore the length of cultivation was shorter in summer, and the total hours of sunshine in winter were longer than in summer.
- 2. The amounts of released N from slow-release fertilizer under two conditions (14 and 22°C) were investigated. At low temperature, released N from fertilizer was limited, so the absorbed N from soil to plant was low and the content of nitrate N in soil after harvest was also low. In result, the concentration of nitrate N in plant was low. On the contrary, the amount of N comprised in slow-release fertilizer was almost released at high temperature. On the other hand, there was no effect of different temperature on the concentration of nitrate N in plants when quickly chemical fertilizer was used.
- 3. There were different concentrations of nitrate N in plants among 12 cultivars. The concentration of nitrate N in cv. Yokattana was remarkably low. There was no correlation between the concentration of nitrate in plant and plant growth, or the concentration of nitrate in plant and morphology, so it was suggest that was difficult to estimate the concentration of nitrate N in plant to look at.

- 4. It was investigated why it was high concentration of nitrate N in plant under high temperature and drought condition in summer. The optimal temperature for plant growth was 14-22°C. The concentration of nitrate N in plant was high at more than 22°C, and higher under low amount of irrigation condition. In addition to that, if the application of water was reduced, nitrate nitrogen accumulation would be higher than normal water application. Among different watering conditions (high, normal and low) at optimum temperature, the highest fresh weight was observed in high watering condition but nitrate nitrogen concentration was the lowest in that. In summer, leaf water potential was low because of high temperature and dry condition of the soil. For these reasons, photosynthesis and translocation rates were decreased. Although the total dry weight was low, the amount of nitrate nitrogen was generally high in plants. The reason may be nitrate nitrogen can no longer reached up to the leaf blade because of reduction in translocation rate.
- 5. Effects of light irradiation, water-supply and storage temperature on quality and nitrate N concentration in Komatsuna plants were evaluated during film packaging (FP) storage. Plants were stored in FP under low-temperatures (7°C-14°C), lighting (PPFD 2.85-4.56 µmol·m⁻²·s⁻¹) and water-supply. The fresh weight of plants might be increased because transpiration was suppressed by FP and water was continually absorbed from roots. Leaves are still green because chloroplasts were synthesized by light irradiation. In addition, nitrate N concentration in the plants was reduced by about 36%, when plants were stored for 4 days at 14°C. It seemed that the decrease was caused by an increase in nitrate utilization by metabolisms such as photosynthesis, chloroplast, respiration. Thus the quality of Komatsuna plants can be maintained by film packaging storage method under low-temperature (14°C), with lighting and water-supply in order to reduce the nitrate N concentration. When the same storage method was carried out on plants such lettuce (*Lactuca sativa* L.), Chinese cabbage (*Brassica campestris* L. var. chinensis) and Mizuna (*Brassica rapa* L. var. nipposinica), there is no difference and the same result was observed.